This news release may contain certain forward-looking information as defined under applicable Canadian securities legislation, that are not based on historical fact, including without limitation statements containing the words "believes", "anticipates", "plans", "intends", "will", "should", "expects", "continue", "estimate", "forecasts" and other similar expressions. In particular, this news release includes forward looking information relating to the Phase 3 BETonMACE clinical trial, Phase 2a kidney dialysis clinical trial and Fabry Disease clinical trial, and the potential role of apabetalone in the treatment of CVD, DM, chronic kidney disease, end-stage renal disease treated with hemodialysis, neurodegenerative disease, Fabry disease, peripheral artery disease and other orphan diseases. Our actual results, events or developments could be materially different from those expressed or implied by these forward-looking statements. We can give no assurance that any of the events or expectations will occur or be realized. By their nature, forward-looking statements are subject to numerous assumptions and risk factors including those discussed in our Annual Information Form and most recent MD&A which are incorporated herein by reference and are available through SEDAR at www.sedar.com. The forward-looking statements contained in this news release are expressly qualified by this cautionary statement and are made as of the date hereof. The Company disclaims any intention and has no obligation or responsibility, except as required by law, to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.

Contact
Donald J. McCaffrey
Email: ir@resverlogix.com
Phone: 403-254-9252
Website: www.resverlogix.com
About Resverlogix

- Resverlogix Corp. (TSX:RVX) is a Calgary and San Francisco based clinical stage biotechnology company focused on the development of apabetalone.

- Apabetalone (RVX-208) is a first-in-class small molecule selective BET bromodomain inhibitor, which acts via an epigenetic mechanism that can turn disease-causing genes off, returning them to a quiescent state.

- Apabetalone has been the only selective BET bromodomain inhibitor in clinical trials for the past 10 years:
 - Discovered & synthesized in 2006
 - Selected using a cell based screen for Apolipoprotein A-I
The epigenetic code refers to modifications to chromatin components that regulate its activity.

Turning genes on or off is regulated by these modifications.

BET (Bromodomain and Extraterminal Domain) proteins recognize these modifications and turn genes on.

Epigenetics

A mechanism for regulating gene activity independent of DNA sequence that determines which genes are turned on or off:

- in a particular cell type
- in different disease states
- in response to a physiological stimulus
Completed Trials

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>First-in-man single ascending dose and 7-day multiple dosing</td>
<td>80</td>
</tr>
<tr>
<td>1 BE</td>
<td>Single dose bio-equivalency comparing capsule and tablet drug form</td>
<td>7</td>
</tr>
<tr>
<td>1 BE</td>
<td>Single dose bio-equivalency comparing capsule and tablet drug form</td>
<td>9</td>
</tr>
<tr>
<td>1b/2a</td>
<td>28 day multiple dosing safety, tolerability and efficacy in healthy volunteers with low HDL</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>12 week dose-ranging safety, tolerability and efficacy in stable CVD patients</td>
<td>299</td>
</tr>
<tr>
<td>2b SUSTAIN</td>
<td>24 week single-dose safety, tolerability and efficacy in patients with low HDL</td>
<td>176</td>
</tr>
<tr>
<td>2b ASSURE</td>
<td>26 week risk-stratified IVUS study in patients with low HDL</td>
<td>323</td>
</tr>
<tr>
<td>2b</td>
<td>Pre-diabetes mellitus / effects of RVX-208 and ApoA-I production on glucose metabolism</td>
<td>20</td>
</tr>
<tr>
<td>1 PK</td>
<td>Single dose PK assessment in patients with severe renal impairment</td>
<td>16</td>
</tr>
</tbody>
</table>

Ongoing Trials

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 BETonMACE</td>
<td>Secondary prevention of MACE in patients with diabetes and low HDL</td>
<td>2,400+</td>
</tr>
<tr>
<td>2a BETonRenal</td>
<td>Evaluate the safety, tolerability, and efficacy in Dialysis Patients</td>
<td>30</td>
</tr>
<tr>
<td>2a Fabry Disease</td>
<td>Proof-of-concept in orphan disease indication (Fabry Disease)</td>
<td>10+</td>
</tr>
</tbody>
</table>

Apabetalone (RVX-208) Clinical Trial Program

1. **Completed 2008**
 - First-in-man single ascending dose and 7-day multiple dosing

2. **Completed 2009**
 - Single dose bio-equivalency

3. **Completed 2009**
 - 28 day multiple dosing safety, tolerability and efficacy in healthy volunteers with low HDL

4. **Completed 2009**
 - Single dose bio-equivalency comparing capsule and tablet drug form

5. **Completed 2010**
 - 12 week dose-ranging safety, tolerability and efficacy in stable CVD patients

6. **Completed 2012**
 - 24 week single-dose safety, tolerability and efficacy in patients with low HDL

7. **Completed 2013**
 - 26 week risk-stratified IVUS study in patients with low HDL

8. **Completed 2014**
 - Pre-diabetes mellitus / effects of RVX-208 and ApoA-I production on glucose metabolism

9. **Completed 2016**
 - Single dose PK assessment in patients with severe renal impairment

10. **Fully Enrolled**
 - Secondary prevention of MACE in patients with diabetes and low HDL

11. **Active**
 - Evaluate the safety, tolerability, and efficacy in Dialysis Patients

12. **Active**
 - Proof-of-concept in orphan disease indication (Fabry Disease)
RVX-208, an Inducer of ApoA-I in I
Bromodomain Antagonist

Data on gene and protein expression induced by apabetalone treated human primary hepatocytes

Sylwia Wasiak, Dean Gilham, Christopher Halliday, Kevin G. McLure, Peter B. Ewelina Kulikowski, Jan Norman C. Wong

Increase in CVD and CKD Risk Factors

Adapted from: Campbell, AE. et al. 2017

Downregulation of the Complement Cascade In Vitro, in Mice and in Patients with Cardiovascular Disease by the BET Protein Inhibitor Apabetalone (RVX-208)

Sylwia Wasiak, Dean Gilham, Laura M. Tsujikawa, Christopher Halliday, Stephanie C. Stotz, Dean Gilham, Ravi Jahagirdar, Kamyar Kalantar-Zadeh, Richard Robson, Michael Sweeney, Jan O. Johansson, Norman C. Wong, Ewelina Kulikowski

Benefit of Apabetalone on Plasma Proteins in Renal Disease

Sylwia Wasiak, Laura M. Tsujikawa, Christopher Halliday, Stephanie C. Stotz, Dean Gilham, Ravi Jahagirdar, Kamyar Kalantar-Zadeh, Richard Robson, Michael Sweeney, Jan O. Johansson, Norman C. Wong, Ewelina Kulikowski

Autoimmune Disease

Ravi Jahagirdar, Sarah Attwell, Suzana Marusic, Alison Bendele, Narmada Shenoy, Kevin G. McLure, Dean Gilham, Karen Norek, Henrik C. Hansen, Raymond Yu, Jennifer Tobin, Gregory S. Wagner, Peter R. Young, Norman C. W. Wong, and Ewelina Kulikowski

Journal of Translational Cardiovascular Research

Original Article

Am J Cardiace Drugs
DOI 10.1007/s40256-017-0250-3

ORIGINAL RESEARCH ARTICLE

Selective BET Protein Inhibition with Apabetalone and Cardiovascular Events: A Pooled Analysis of Trials in Patients with Coronary Artery Disease

Journal of Translational Cardiovascular Research

Original Article

Kidney International Reports

Articles & Issues - For Authors - For Readers - For Advertisers - Companion Journals -

< Previous Article

Articles in Press

Search

Next Article >

Downregulation of the Complement Cascade In Vitro, in Mice and in Patients with Cardiovascular Disease by the BET Protein Inhibitor Apabetalone (RVX-208)
Recent high profile publications illustrate apabetalone-induced activation of latent HIV-1 \textit{in vitro} and \textit{ex vivo}.

Suggest that apabetalone synergistically reactivated latent HIV-1 and could combine with cART drugs to inhibit viral infection.

Acta Pharmacologica Sinica

ARTICLE

The BET bromodomain inhibitor apabetalone induces apoptosis of latent HIV-1 reservoir cells following viral reactivation.

Xuan-xuan Zhang1, Jian Lin1, Tai-zhen Liang1, Heng Duan2, Xing-hua Tan2, Bao-min Xi1, Lin Li1 and Shu-wen Liu1

SCIENTIFIC REPORTS

OPEN

BET inhibitors RVX-208 and PFI-1 reactivate HIV-1 from latency

Panpan Lu1, Yinzhong Shen1, He Yang1, Yanan Wang1, Zhengtao Jiang1, Xinyi Yang1, Yangcheng Zhong1, Hanyu Pan1, Jianqing Xu2, Hongzhou Lu2 & Huanzhang Zhu1
Capitalization and Financial Profile

<table>
<thead>
<tr>
<th>Founded</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ticker</td>
<td>TSX: RVX</td>
</tr>
<tr>
<td>Market Cap</td>
<td>~C$250MM</td>
</tr>
<tr>
<td>Shares Outstand</td>
<td>175.04MM</td>
</tr>
<tr>
<td>Cash Burn (Annual)</td>
<td>~C$40.0M</td>
</tr>
<tr>
<td>Finance</td>
<td>$30MM USD—Announced April 2018</td>
</tr>
</tbody>
</table>

RVX Top Shareholders

- Shenzen Hepalink Pharmaceutical Co Ltd.
- Eastern Capital, Ltd.
- NGN Capital
- Donald J. McCaffrey
- Norman C.W. Wong
- Efung Capital
- CD Venture
- Wayne Chiu (Co-founder)
- Widely Held

- RVX shareholder base consists of several long term investors who have been supportive over 10 years
- RVX maintains a diversified public market float of approximately 54M shares
2017 Major Accomplishments

- FDA Approvals for a CKD Trial and BETonMACE
- Successful Data from Kidney Trial in New Zealand
- Over $100MM in Financing Completed
- Four Publications in 2017; Five in the works for 2018
- $68.8MM Long Term Debt Repaid – IP unencumbered
- Additional Communications: Numerous press releases and new analyst reports published in 2017
Shenzhen Hepalink Partnership

Resverlogix’s partnership with Shenzhen Hepalink represents the largest single molecule deal in the history of China

Resverlogix – Shenzhen Hepalink Exclusive Licensing Agreement

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
<td>• Apabetalone (RVX-208)</td>
</tr>
<tr>
<td>Licensor</td>
<td>• Resverlogix Corp.</td>
</tr>
<tr>
<td>Licensee</td>
<td>• Shenzhen Hepalink Pharmaceutical Co., Ltd.</td>
</tr>
<tr>
<td>Territory</td>
<td>• China, Hong Kong, Taiwan, and Macau</td>
</tr>
<tr>
<td>Indications</td>
<td>• Any approved indication</td>
</tr>
</tbody>
</table>
| **Deal Structure** | • US$35M in equity investments in Resverlogix
 • >US$400M in projected future China sales milestones and licensing royalties |
| **Developmental Costs** | • Shenzhen Hepalink is responsible for all developmental costs for the licensed territories
 • This includes the cost of additional clinical trials in the licensed territories, regulatory applications, etc. |
Protein Targeting
Focus on reducing or blocking the activity of one disease protein by using an inhibitor or antibody

Antibody or Inhibitor – blocks activity of one mediator of disease

Genome Editing
The mechanism is based on cutting and pasting undesired/desired sequences into or out of the DNA, thereby altering the gene sequence and then re-introducing the modified DNA into the body.

CRISPR – gene editing within a cell sub population
Protein Targeting
Focus on reducing or blocking the activity of one disease protein by using an inhibitor or antibody.

Antibody or Inhibitor — blocks activity of one mediator of disease

Genome Editing
The mechanism is based on cutting and pasting undesired/desired sequences into or out of the DNA, thereby altering the gene sequence and then re-introducing the modified DNA into the body.

CRISPR — gene editing within a cell sub population
Unique Mechanism of Action

Transcriptional Regulation
Mechanism is based on changing the levels of disease causing proteins by modulating their expression at the gene level.

Apabetalone – reduces expression of disease mediators.
SOMAscan® Analysis of Plasma Proteome in CKD Patients
IPA Canonical Pathways

Dendritic cell maturation

Th1 pathway

NF-κB Signaling

Acute Phase Response

Wasiak et al., 2017
SOMAscan® Analysis of Plasma Proteome in CKD Patients
IPA Canonical Pathways: Top 5 Pathways Upregulated at Baseline

- Dendritic cell maturation
- Th1 pathway
- NF-κB Signaling
- IL6 Signaling
- Acute Phase Response

Wasiak et al., 2017
SOMAscan® Analysis of Plasma Proteome in CKD Patients
IPA Canonical Pathways: Top 5 Pathways Downregulated with Apabetalone

- Dendritic cell maturation
- Apabetalone
- Th1 pathway
- NF-κB Signaling
- IL6 Signaling
- Acute Phase Response

Wasiak et al., 2017
Differentiation (RVX’s BET Platform)

- Resverlogix has discovered compounds that **selectively** bind the bromodomains of BET proteins
 - Bromodomain selectivity: Resverlogix’s apabetalone selectively targets BD2
 - BET (BRD2, BRD3, BRD4) protein selectivity: Our expertise in medicinal chemistry and epigenetics allows us to identify small molecules that target one or a specified subset of BET proteins
- Our Phase 2 clinical program provided us with what was the only blood bank of BET inhibitor-treated patients in the world
 - In-depth analysis such as proteomics, genomics, and pathway analysis revealed advanced knowledge of BET activities
 - The resulting knowledge from these activities provided a level of sophistication around BET that surpasses that of many others working in this area
- The properties of Resverlogix’s molecules **avoid side effects seen with other BETi**
 - BET programs in oncology can tolerate a high degree of side effects due to the nature of the disease being treated
 - Chronic conditions such as cardiovascular disease and renal impairment require treatments with a side-effect profile acceptable for long-term treatment
Apabetalone, a bromodomain extra-terminal (BET) protein inhibitor, regulates the expression of genes and restores the function of pathways underlying the pathogenesis of CVD and kidney disease.

Reduced incidence of MACE

- Reductions in the components and function of the complement cascade
- Reductions in mediators that promote inflammation of the vasculature
- Reductions in components of the coagulation cascade
- Reductions in mediators that promote calcium deposition in the vasculature
- Increased ApoA-I, positive effects on lipid content of HDL
- Delayed and reduced oral glucose absorption and endogenous production
Nicholls et al. 2017 American Journal of Cardiovascular Drugs

MACE: Major Adverse Cardiac Events including: death, myocardial infarction, stroke, coronary revascularization, hospitalization for acute coronary syndrome or heart failure

Decrease in MACE was most profound in patients who had a higher level of inflammation such as patients with diabetes
CVD Program Moving Forward
BETonMACE CV Outcomes Study

2,400 + subjects
- double blinded
- 1-2 week statin run-in

atiorvastatin or rosuvastatin run-in

apabetalone 200mg daily + standard of care

placebo + standard of care

safety follow-up

standard of care includes 20-80 mg atorvastatin or 10-40 mg rosuvastatin

1-2 weeks

1-2 weeks

treatment duration up to 104 weeks

4-16 weeks

screening

randomization (1:1)

end of treatment

The study is an event-based trial and continues until 250 narrowly defined MACE events have occurred

Key inclusion criteria
- Type II Diabetes Mellitus
 - HbA1c > 6.5% or history of diabetes medications
- CAD event 7 days - 90 days prior to screening
 - Myocardial infarction (MI), unstable angina or percutaneous coronary intervention
- HDL < 1.04 for males and < 1.17 for females
Apabetalone has already been tested in over 1,900 patients in 18 countries around the world.
2018 Milestone Targets

- **BETonMACE Enrollment Completed**
- **Phase 2a Dialysis Study First Patient Randomized**
- **Additional Corporate Financing 30M USD Completed**
- **Fabry Disease First Patient Enrollment**
- **Top Line Data for BETonMACE**

Q1 2018
- BETonMACE Enrollment Completed

Q2 2018
- Additional Corporate Financing 30M USD Completed

Q3 2018
- Phase 2a Dialysis Study First Patient Randomized
- Fabry Disease First Patient Enrollment
- Q4 2018

Q4 2018
- Top Line Data for BETonMACE

Additional Clinical Targets

Several additional targets exist and the order of launch may alternate.
Chronic Kidney Disease Clinical Program Overview
Apabetalone has demonstrated reductions in alkaline phosphatase (a strong marker of CKD risk) and improvements in eGFR in CKD patients (eGFR < 60 mL/min/1.73m²) with CVD in the phase 2 ASSURE and SUSTAIN trials.

Resverlogix believes that BET inhibition and apabetalone may have the potential to improve kidney function, as measured by eGFR, in patients suffering from various stages of kidney disease.

Resverlogix is currently investigating the potential for expansion into specific kidney indications:
- CKD (Stages 3a and 3b) patients, with a history of CVD (Phase 3 BETonMACE subgroup)
- High Risk CKD Patients on Dialysis (Phase 2a BETonRenal study)

Rationale for Kidney Disease Program

Data Presented in Keynote Address at the 2015 American Society of Nephrology Conference, San Diego
Kidney Disease Phase I Study

A Phase I, Open-Label, Parallel Group Study to Evaluate the Safety and Pharmacokinetics of a Single Oral Dose of Apabetalone in Subjects with Severe Renal Impairment

Cohort 1
Previously diagnosed with CKD (stage IV) and not on dialysis (eGFR <30 mL/min/1.73m²) N=8

Cohort 2
Volunteers matched for age (±10 years), weight (±20%), and gender with the subjects in Cohort 1 (renal impaired subjects); eGFR ≥60 mL/min/1.73m² N=8

Trial demonstrated that apabetalone has a highly differential effect on protein levels based on disease status, healthy vs sick, reducing a variety of plasma proteins and downregulating pathways activated in the CKD cohort.
CKD Program - Phase 1 Data
Effect of Apabetalone on Differentially Expressed Proteins

288 proteins were different between the plasma of CKD patients and matched controls (red indicates higher protein levels in CKD/control)

CKD = Subjects with stage 4 Chronic Kidney Disease

Blue = downregulated; white = no change; Red = upregulated
CKD Program - Phase 1 Data
Effect of Apabetalone on Differentially Expressed Proteins

288 proteins were different between the plasma of CKD patients and matched controls (red indicates higher protein levels in CKD/control)

CKD = Subjects with stage 4 Chronic Kidney Disease

100mg Dose Apabetalone

Blue = downregulated; white = no change; Red = upregulated
CKD Program - Phase 1 Data
Effect of Apabetalone on Differentially Expressed Proteins

288 proteins were different between the plasma of CKD patients and matched controls (red indicates higher protein levels in CKD/control).

CKD = Subjects with stage 4 Chronic Kidney Disease

152 of the 288 differentially expressed proteins in the CKD patients were downregulated at 12 hours following one dose of apabetalone.

100mg Dose Apabetalone

Blue = downregulated; white = no change; Red = upregulated

In CKD patients, one dose of apabetalone reduced CKD and CVD biomarkers that were dysregulated at baseline.
SOMAscan® Analysis of Plasma Proteome – Phase 1 Trial

Apabetalone Reduces CVD and CKD Biomarkers

<table>
<thead>
<tr>
<th>Protein Name</th>
<th>Gene Symbol</th>
<th>Subjects with CKD (stage IV) (n=8) treated with 100 mg Apabetalone</th>
<th>Matched Control Subjects (n=8) treated with 100 mg Apabetalone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% Δ from baseline at 12h</td>
<td>p-value</td>
</tr>
<tr>
<td>Interleukin-6</td>
<td>IL6</td>
<td>0.05</td>
<td>NS</td>
</tr>
<tr>
<td>Interleukin-1 alpha</td>
<td>IL1A</td>
<td>0.04</td>
<td>NS</td>
</tr>
<tr>
<td>Interferon gamma</td>
<td>IFNG</td>
<td>0.05</td>
<td>NS</td>
</tr>
<tr>
<td>TNF receptor superfamily member 1A</td>
<td>TNFRSF1A</td>
<td>0.04</td>
<td>NS</td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>CRP</td>
<td>0.04</td>
<td>NS</td>
</tr>
<tr>
<td>Tumor necrosis factor</td>
<td>TNF</td>
<td>0.02</td>
<td>NS</td>
</tr>
<tr>
<td>P-selectin</td>
<td>SELP</td>
<td>0.04</td>
<td>NS</td>
</tr>
<tr>
<td>E-selectin</td>
<td>SELE</td>
<td>0.05</td>
<td>NS</td>
</tr>
<tr>
<td>Intercellular adhesion molecule 1</td>
<td>ICAM1</td>
<td>0.05</td>
<td>NS</td>
</tr>
<tr>
<td>Vascular cell adhesion protein 1</td>
<td>VCAM1</td>
<td>0.01</td>
<td>NS</td>
</tr>
<tr>
<td>Fibronectin</td>
<td>FN1</td>
<td>0.02</td>
<td>NS</td>
</tr>
<tr>
<td>Stromelysin-1</td>
<td>MMP3</td>
<td>0.02</td>
<td>NS</td>
</tr>
<tr>
<td>Stromelysin-2</td>
<td>MMP10</td>
<td>0.02</td>
<td>NS</td>
</tr>
<tr>
<td>Osteopontin</td>
<td>SPP1</td>
<td>0.01</td>
<td>NS</td>
</tr>
<tr>
<td>Plasminogen activator inhibitor 1</td>
<td>SERPINE1</td>
<td>0.04</td>
<td>NS</td>
</tr>
<tr>
<td>Tissue-type plasminogen activator</td>
<td>PLAT</td>
<td>0.01</td>
<td>NS</td>
</tr>
<tr>
<td>Urokinase-type plasminogen activator</td>
<td>PLAU</td>
<td>0.01</td>
<td>NS</td>
</tr>
<tr>
<td>D-dimer</td>
<td>FGA/B/C</td>
<td>0.05</td>
<td>NS</td>
</tr>
<tr>
<td>Urokinase plasminogen activator surface receptor</td>
<td>PLAUR</td>
<td>0.02</td>
<td>NS</td>
</tr>
</tbody>
</table>

Inflammation

Cell Adhesion

Matrix Remodeling Calcification

Thrombosis

Apabetalone reduces markers of inflammation, cell adhesion, matrix remodeling, calcification and thrombosis in the CKD cohort after one dose and 12 hours.
Kidney Disease Program Clinical Advisory Board

Dr. Kamyar Kalantar-Zadeh
Chair
UC Irvine Chief Nephrology

Prof. Vincent Brandenburg
Member
University Hospital RWTH Aachen

Dr. Carmine Zoccali
Member
University Pisa

Dr. Marcello Tonelli
Member
University of Calgary Chair Medical Research

Dr. Srinivasan Beddhu
Member
University of Utah

Dr. Mathias Haarhaus
Member
Karolinska University Hospital
Investment Opportunity

- **Phase 3 company** focused on significant unmet need in high-risk CVD patient population with lead therapeutic - **apabetalone**

- **Market leader with significant potential** – targeting high-risk unmet need in several patient groups – Over 10MM patients in top 7 markets

- **Advancing development** of apabetalone in high-risk (dialysis) CKD patients – New phase 2 clinical trials to commence in early 2018

- **Well established safety profile** - to date, over 1,900 patients treated with apabetalone with no significant safety issues

- **Proven track record** of funding development while minimizing shareholder dilution