Forward Looking Statement

This presentation may contain certain forward-looking information as defined under applicable Canadian securities legislation, that are not based on historical fact, including without limitation statements containing the words "believes", "anticipates", "plans", "intends", "will", "should", "expects", "continue", "estimate", "forecasts" and other similar expressions. In particular, this presentation may include forward looking information relating to the Phase 3 BETonMACE clinical trial, Phase 2a kidney dialysis clinical trial and Fabry Disease clinical trial, and the potential role of apabetalone in the treatment of CVD, DM, chronic kidney disease, end-stage renal disease treated with hemodialysis, neurodegenerative disease, Fabry disease, peripheral artery disease and other orphan diseases. Our actual results, events or developments could be materially different from those expressed or implied by these forward-looking statements. We can give no assurance that any of the events or expectations will occur or be realized. By their nature, forward-looking statements are subject to numerous assumptions and risk factors including those discussed in our Annual Information Form and most recent MD&A which are incorporated herein by reference and are available through SEDAR at www.sedar.com. The forward-looking statements contained in this news release are expressly qualified by this cautionary statement and are made as of the date hereof. The Company disclaims any intention and has no obligation or responsibility, except as required by law, to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.

Contact
Investor Relations
Email: ir@resverlogix.com
Phone: 403-254-9252
Website: www.resverlogix.com
Resverlogix at a Glance

Snapshot

- Late-stage clinical biotechnology company that has built a leadership position in epigenetics

- Lead product candidate is Apabetalone, a first-in-class small molecule selective bromodomain extra-terminal (BET) protein inhibitor with broad applicability for cardiovascular, renal and other disease indications

- Fully enrolled Phase 3 trial for secondary prevention of MACE in patients with diabetes (type 2) and low HDL

- Attractive safety profile, with over 1,900 patients dosed and eight successful DSMB readouts in Phase 3

- Addresses critical unmet need with 12 million+ patients in top 8 markets

- Robust intellectual property position for composition, use, and manufacturing, with patent life ranging from 2027 to 2034

Profile

<table>
<thead>
<tr>
<th>Listing</th>
<th>Toronto Stock Exchange: RVX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Cap</td>
<td>~C$600M(2)</td>
</tr>
<tr>
<td>Shares Outstanding</td>
<td>195M(2)</td>
</tr>
</tbody>
</table>

Note:
1. Based on USD/CAD exchange rate of 1.33
2. As of March 1, 2019
Our Clinical Development Pipeline

<table>
<thead>
<tr>
<th>Apabetalone Indication</th>
<th>Pre-clinical</th>
<th>Phase 1</th>
<th>Phase 2 Ready</th>
<th>Phase 3</th>
<th>Status Est.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Coronary Syndrome (ACS) - BETonMACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiation: 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trial completion estimate: H1 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Coronary Syndrome (ACS) - BETonMACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiation: 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trial completion estimate: H1 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular Cognitive Dementia*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiation: H2 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic Kidney Disease*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiation: H2 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabry disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiation: H2 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary Arterial Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiation: H2 2019</td>
</tr>
</tbody>
</table>

* To initiate following BETonMACE trial completion

19% of BETonMACE participants in VCD subgroup

11% of BETonMACE participants in CKD subgroup
Addressing a Critical Unmet Need

Cardiovascular disease is still the number one killer of both males and females and costs the US healthcare system over $500B per year.

Current CVD Therapies
- Statins are the top medication used to treat CVD
- Despite maximized use, current therapies only manage about 30% of CVD events

New LDL Modulators
Several new types of LDL modulators are in clinic. Leading are the very expensive PCSK9’s

Opportunity
Huge market potential resides in the remaining ~60% unmet need in CVD management

Diabetes prevalence will increase by 55% in the next 30 years, with the Middle east region showing an increase of 96%.
Overview of Epigenetics

The epigenetic code refers to modifications to chromatin components that regulate its activity.

Turning genes on or off is regulated by these modifications.

BET (Bromodomain and Extraterminal Domain) proteins recognize these modifications and turn genes on.
Our Differentiated BET Platform

- Resverlogix has discovered compounds that **selectively** bind the bromodomains of BET proteins
 - Bromodomain selectivity: Resverlogix’s Apabetalone selectively targets BD2
 - BET (BRD2, BRD3, BRD4) protein selectivity: Our expertise in medicinal chemistry and epigenetics allows us to identify small molecules that target one or a specified subset of BET proteins
- Our Phase 2 clinical program provided us with what was **the only blood bank of BET inhibitor-treated patients in the world**
 - In-depth analysis of proteomics, genomics, and pathways revealed advanced knowledge of BET activities
 - The resulting knowledge from these activities provided a level of sophistication around BET that surpasses that of many others working in this area
- The properties of Resverlogix’s molecules **avoid side effects seen with other BETi**
 - BET programs in oncology can tolerate a high degree of side effects due to the nature of the disease being treated
 - Chronic conditions such as cardiovascular disease and renal impairment require treatments with a side-effect profile acceptable for long-term treatment
Transcriptional Regulation
Mechanism is based on changing the levels of disease causing proteins by modulating their expression at the gene level.

Apabetalone – reduces expression of disease mediators

Protein Targeting
Focus on reducing or blocking the activity of one disease protein by using an inhibitor or antibody

Antibody or Inhibitor – blocks activity of one mediator of disease

Genome Editing
The mechanism is based on cutting and pasting undesired/desired sequences into or out of the DNA, thereby altering the gene sequence and then re-introducing the modified DNA into the body.

CRISPR – gene editing within a cell sub population

Transcriptional Regulation
Mechanism is based on changing the levels of disease causing proteins by modulating their expression at the gene level.

Apabetalone – reduces expression of disease mediators

Protein Targeting
Focus on reducing or blocking the activity of one disease protein by using an inhibitor or antibody

Antibody or Inhibitor – blocks activity of one mediator of disease
Rationale for Kidney Disease Program

- Apabetalone has demonstrated reductions in alkaline phosphatase (ALP; a strong marker of CKD risk) and improvements in estimated glomerular filtration rate (eGFR) in CKD patients (eGFR < 60 mL/min/1.73m²) with CVD in the phase 2 ASSURE and SUSTAIN trials

- BET inhibition by Apabetalone may have the potential to improve kidney function, as measured by eGFR, in patients suffering from various stages of kidney disease

- Resverlogix is currently investigating the potential for expansion into specific kidney indications:
 - CKD (Stages 3a and 3b) patients, with a history of CVD (Phase 3 BETonMACE subgroup)
 - High Risk CKD Patients on Dialysis (Phase 2b BETonRenal study)

Data Presented in Keynote Address at the 2015 American Society of Nephrology Conference, San Diego
A Phase I, Open-Label, Parallel Group Study to Evaluate the Safety and Pharmacokinetics of a Single Oral Dose of Apabetalone in Subjects with Severe Renal Impairment

Cohort 1
Previously diagnosed with CKD (stage IV) and not on dialysis (eGFR <30 mL/min/1.73m²) N=8

Cohort 2
Volunteers matched for age (±10 years), weight (±20%), and gender with the subjects in Cohort 1 (renal impaired subjects); eGFR ≥60 mL/min/1.73m² N=8

Trial demonstrated that Apabetalone has a highly differential effect on protein levels based on disease status, healthy vs sick, reducing a variety of plasma proteins and downregulating pathways activated in the CKD cohort
SOMAscan® Analysis of Plasma Proteome in CKD Patients
IPA Canonical Pathways

Dendritic cell maturation

IL6 Signaling

Acute Phase Response

Th1 pathway

NF-kB Signaling

Wasiak et al., 2017

Δ>10% p<0.05
SOMAscan® Analysis of Plasma Proteome
IPA Canonical Pathways: Top 5 Pathways Upregulated at Baseline

- Baseline
- IL6 Signaling
- Acute Phase Response
- NF-κB Signaling
- Th1 pathway
- Dendritic cell maturation

Wasiak et al., 2017

Δ>10% p≤0.05
SOMAscan® Analysis of Plasma Proteome
IPA Canonical Pathways: Top 5 Pathways Downregulated with Apabetalone

- **Dendritic cell maturation**
- **Apabetalone**
- **Th1 pathway**
- **NF-κB Signaling**
- **IL6 Signaling**
- **Acute Phase Response**

Wasiak et al., 2017

\(\Delta \geq 10\% \ p \leq 0.05 \)
Apabetalone reduces markers of inflammation, cell adhesion, matrix remodeling, calcification and thrombosis in the CKD cohort after one dose and 12 hours.

Wasiak et al., 2017

<table>
<thead>
<tr>
<th>Protein Name</th>
<th>Gene Symbol</th>
<th>Subjects with CKD (stage IV) (n=8) treated with 100 mg Apabetalone</th>
<th>Matched Control Subjects (n=8) treated with 100 mg Apabetalone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%Δ from baseline at 12h</td>
<td>p-value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%Δ from baseline at 12h</td>
<td>p-value</td>
</tr>
<tr>
<td>Inflammation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interleukin-6</td>
<td>IL6</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Interleukin-1 alpha</td>
<td>IL1A</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Interferon gamma</td>
<td>IFNG</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>TNF receptor superfamily member 1A</td>
<td>TNFRSF1A</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>CRP</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Tumor necrosis factor</td>
<td>TNF</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Adhesion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-selectin</td>
<td>SELP</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Remodeling/Calcification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibronectin</td>
<td>FN1</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Stromelysin-1</td>
<td>MMP3</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Stromelysin-2</td>
<td>MMP10</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Adhesion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercellular adhesion molecule 1</td>
<td>ICAM1</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular cell adhesion protein 1</td>
<td>VCAM1</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrombosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasminogen activator inhibitor 1</td>
<td>SERPINE1</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Tissue-type plasminogen activator</td>
<td>PLAT</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Urokinase-type plasminogen activator</td>
<td>PLAU</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>D-dimer</td>
<td>FGA/B/C</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteopontin</td>
<td>SPP1</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"NS": not significant
BET Inhibition Impacts the Pathways that Drive Cardiovascular Disease and Kidney Diseases

Apabetalone, a bromodomain extra-terminal (BET) protein inhibitor, regulates the expression of genes and restores the function of pathways underlying the pathogenesis of CVD and kidney disease.

- **Reduced incidence of MACE**
- **Increased ApoA-I, positive effects on lipid content of HDL**
- **Delayed and reduced oral glucose absorption and endogenous production**
- **Reduced incidence of MACE**
- **Complement Pathway**
- **Vascular Inflammation**
- **Reverse Cholesterol Pathway**
- **Metabolism**
- **Vascular Calcification**
- **Coagulation Pathway**

- **Reductions in the components and function of the complement cascade**
- **Reductions in mediators that promote inflammation of the vasculature**
- **Reductions in components of the coagulation cascade**
- **Reductions in mediators that promote calcium deposition in the vasculature**
Critical Conclusions from our Phase 2 CVD Trials (ASSERT, ASSURE and SUSTAIN) Nicholls et al. 2018 Am J Cardiovasc Drugs

MACE: Major Adverse Cardiac Events including: death, myocardial infarction, stroke, coronary revascularization, hospitalization for acute coronary syndrome or heart failure

![Incidence of MACE in total patient group](chart1)

- Placebo (n=242)
- Apabetalone (n=556)

44% RRR
p=0.0232

![MACE in elevated CRP @ baseline subgroup](chart2)

- Placebo Elevated CRP (n=133)
- Apabetalone Elevated CRP (n=290)

62% RRR
p=0.0166

![MACE in Diabetics subgroup](chart3)

- Placebo Diabetics (n=85)
- Apabetalone Diabetics (n=195)

57% RRR
p=0.0181

Decrease in MACE was most profound in patients who had a higher level of inflammation and patients with diabetes.
2,400 + subjects
- double blinded
- 1-2 week statin run-in

BETonMACE Phase 3 Trial

Enrollment Complete; Trial completion expected H1 2019

Atorvastatin or Rosuvastatin run-in

- Apabetalone 200mg daily + standard of care
 - Safety follow-up
- Placebo + standard of care
 - Safety follow-up

- Standard of care includes 20-80 mg atorvastatin or 10-40 mg rosuvastatin
- Treatment duration up to 3 yrs
- 4-16 weeks

The study is an event-based trial and continues until 250+ narrowly defined MACE events have occurred

Key inclusion criteria
- Type II Diabetes Mellitus
 - HbA1c > 6.5% or history of diabetes medications
- CAD event 7 days - 90 days prior to screening
 - Myocardial infarction (MI) or unstable angina with or without percutaneous coronary intervention to manage acute coronary syndrome
- HDL < 1.04 for males and < 1.17 for females
High Risk Acute Coronary Syndrome (ACS) Patients with a Type II Diabetes Mellitus (DM)
Comorbidity and Low High-Density Lipoprotein Cholesterol (HDL-C)

<table>
<thead>
<tr>
<th>Phase 3 BETonMACE</th>
<th>Efficacy Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary endpoint: Time to the first occurrence of Major Adverse Cardiovascular Events (MACE) defined as CVD death; non-fatal myocardial infarction (MI); non-fatal ischemic stroke</td>
</tr>
<tr>
<td></td>
<td>Secondary endpoints include: hospitalization for unstable angina, emergency revascularization procedures, and all-cause mortality</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subgroup Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assess potential improvement in kidney function, MACE, and renal serious adverse events (SAEs) (one time 40% or greater reduction in eGFR or doubling of serum creatinine) in population with baseline estimated GFR<60mL/min (stage 3+ CKD)</td>
</tr>
<tr>
<td>Assess potential cognitive improvement based on a MoCA (Montreal Cognitive Assessment) in patients older than 70 years of age</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expected Efficacy Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% relative risk reduction of MACE with statistical significance vs placebo with average treatment duration of 22-24 months of treatment on top of current standard of care</td>
</tr>
<tr>
<td>Significant or trending results in defined subgroups such as CKD and cognition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unique Selling Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novel mechanism of action with multi-factorial approach for the reduction of MACE in high risk ACS patients</td>
</tr>
<tr>
<td>Orally available small molecule with low projected COGS and price compared to monoclonal antibodies and peptides</td>
</tr>
<tr>
<td>Potential for alternate indications and increased accretive value based on subgroup analysis of BETonMACE, proteomic analyses of serum data from past Phase 2 trials and early pre-clinical work</td>
</tr>
</tbody>
</table>
Apabetalone has already been tested in over 1,900 patients in 18 countries around the world, 14 countries have already approved Phase 3 usage.
BETonMACE Clinical Trial Analysis Points and Time Lines

1. **Maintain existing safety** profile until trial completion, last dosing expected H1 2019

2. **Trial completion** – trial to continue until 250+ narrow MACE events have occurred

3. **Narrow, three point MACE event accumulation** stands at over 220

4. **Adjudication of all** SAE MACE events expected to take two to three months post trial completion

5. **Top line data** will be announced after adjudication completion. Key subgroup analyses will also be released if available – Renal & Cognitive function

6. **H2 2019 and beyond** – full outcomes, pre-specified endpoint data, safety results, and clinical implications will be reported and published
Committee Members for BETonMACE

Clinical Advisory Board

Prof. Kausik K. Ray, BSc (hons), MBChB, MD, MPhil (Cantab), FACC, FAHA, FESC, FRCP; Chairman Imperial College

Dr. Gregory G. Schwartz, MD, PhD
University of Colorado Denver

Dr. Stephen Nicholls, MBBS, PhD
South Australian Health and Medical Research Institute

Dr. Henry N. Ginsberg, MD, FAHA
Columbia University

Dr. Peter P. Toth, MD, PhD, FAAFP, FICA, FAHA, FNLA, FCCP, FACC
CGH Medical Center

Dr. Kamyar Kalantar-Zadeh, MD, MPH, PhD, FAAP, FACP, FASN, FAHA, FNKF
University of California Irvine

Recent High Profile Publications

Apabetalone downregulates factors and pathways associated with vascular calcification – *Atherosclerosis 2018*

The Effect of Bromodomain and Extra-Terminal Inhibitor Apabetalone on Attenuated Coronary Atherosclerotic Plaque: Insights from the ASSURE Trial – *American Journal of Cardiovascular Drugs 2018*

Apabetalone Mediated Epigenetic Modulation is Associated with Favorable Kidney Function and Alkaline Phosphatase Profile in Patients with Chronic Kidney Disease – *Kidney and Blood Pressure Research 2018*

Benefit of Apabetalone on Plasma Proteins in Renal Disease– *KI Reports 2018*

Selective BET Protein Inhibition with Apabetalone and Cardiovascular Events: A Pooled Analysis of Trials in Patients with Coronary Artery Disease– *American Journal of Cardiovascular Drugs 2017*

Downregulation of the Complement Cascade In Vitro, in Mice and in Patients with Cardiovascular Disease by the BET Protein Inhibitor Apabetalone (RVX-208)– *Journal of Cardiovascular Translational Research 2017*

RVX-208, a BET-inhibitor for treating atherosclerotic cardiovascular disease, raises ApoA-I/HDL and represses pathways that contribute to cardiovascular disease– *Atherosclerosis 2016*
Apabetalone is a first-in-class, small molecule that is a selective BET inhibitor that produces a specific set of biological effects with important benefits while maintaining a well described safety profile. It is currently being evaluated for the following indications:

1. **High Risk Acute Coronary Syndrome (ACS) Patients with a Type II Diabetes Mellitus (DM) Comorbidity and Low High-Density Lipoprotein Cholesterol (HDL-C)**
 - 1.9 M Patients by 2032

2. **High Risk Chronic Kidney Disease (CKD) Patients (Stages 3-5, Pre-Dialysis) with a Diabetes Mellitus Comorbidity and a History of Cardiovascular Disease (CVD)**
 - 6.6 M Patients by 2032

3. **Dementia and Vascular Cognitive Dementia (MoCA score < 26) in Elderly (>65 years) Patients with Diabetes Mellitus Comorbidity and a History of CVD**
 - 3.2 M Patients by 2032
Additional Indications

- Complement Mediated Disease: orphan indication
- Neurofibromatosis – Malignant Peripheral Nerve Sheath Tumors (MPNST): orphan indication
- Pulmonary Arterial Hypertension: orphan indication
- Muscular Dystrophy/Facio Scapulo Humeral Dystrophy: orphan indication
- Fabry Disease: orphan indication
- Vascular Cognitive Dementia
- HIV eradication
Business Development Strategy

- Partnered Apabetalone in Greater China (China, Hong Kong, Taiwan and Macau) with Shenzhen Hepalink Pharmaceutical, a ~US$4 billion market cap company listed in China
 - US$35M initial equity investments in Resverlogix (total now exceeds US$100M)
 - >US$400M in projected future sales milestones and licensing royalties
 - Hepalink responsible for all development costs in Greater China
- Exclusive licensing agreement with Medison Pharma Ltd. for Apabetalone in Israel
 - >US$100M in projected licensing royalties
- Discussing licensing opportunities in the Middle East / North Africa
- Exploring global licensing options (ex-Greater China and Middle East) for Apabetalone post Phase 3 readout
Management Team

Donald McCaffrey
President & Chief Executive Officer
• Co-founded Resverlogix in 2001 with Dr. Norman Wong
• Has over 40 years of corporate management experience, including over 18 years in drug discovery & development

Dr. Norman C.W. Wong, M.D., FRCP,
Chief Scientific Officer & Co Founder
• Co-founded Resverlogix in 2001 with Donald McCaffrey
• Researches molecular actions of hormones related to the regulation of gene expression and pathogenesis of diabetes mellitus

A. Brad Cann, CA, Chief Financial Officer
• Has over 20 years of experience in a variety of financial and business roles
• Leads the Company’s expanding financial activities supporting advancing scientific and clinical development

Dr. Ewelina Kulikowski, PH.D., SVP, Research & Development
• Joined in 2005 as Director of Research and Development
• Has been involved in the development of lead drug RVX-208 from its discovery through to Phase 3 clinical development

Dr. Michael Sweeney, M.D., SVP, Clinical Development
• Cardiologist with extensive experience in pharmaceutical product development and marketing
• Has over 30 years in the pharmaceutical industry, including 11 years at Pfizer

Kenneth Lebioda, BA, SVP, Business & Corporate Development
• Has over 30 years of experience in the innovative pharmaceutical industry with leading global companies such as Bristol-Myers Squibb, Hoechst Marion Roussel and Marion Merrell Dow

Dr. Jan O. Johansson, M.D., PH.D., SVP, Medical Affairs
• Has had a distinguished 35 year career in academia and in the pharmaceutical industry of which including various companies with expertise in the cardio-metabolic and neurological disease therapeutic area

Dr. Henrik C. Hansen, PH.D., VP, Intellectual Property
• Has over 17 years in drug discovery & development experience.
• Areas of expertise also include medicinal chemistry, process development and manufacturing of drug substances and products for clinical use

Dr. Ewelina Kulikowski, PH.D., SVP, Research & Development
• Joined in 2005 as Director of Research and Development
• Has been involved in the development of lead drug RVX-208 from its discovery through to Phase 3 clinical development

Dr. Michael Sweeney, M.D., SVP, Clinical Development
• Cardiologist with extensive experience in pharmaceutical product development and marketing
• Has over 30 years in the pharmaceutical industry, including 11 years at Pfizer

Kenneth Lebioda, BA, SVP, Business & Corporate Development
• Has over 30 years of experience in the innovative pharmaceutical industry with leading global companies such as Bristol-Myers Squibb, Hoechst Marion Roussel and Marion Merrell Dow

Dr. Jan O. Johansson, M.D., PH.D., SVP, Medical Affairs
• Has had a distinguished 35 year career in academia and in the pharmaceutical industry of which including various companies with expertise in the cardio-metabolic and neurological disease therapeutic area

Dr. Henrik C. Hansen, PH.D., VP, Intellectual Property
• Has over 17 years in drug discovery & development experience.
• Areas of expertise also include medicinal chemistry, process development and manufacturing of drug substances and products for clinical use

Paul Moon, CPIR
VP, Investor Relations and Communications
• Has over 25 years of public company experience working in multiple industries, including: technology, financial services, real estate, international mining, and oil and gas
Investment Highlights

1. **Global leader in epigenetic research and drug development**

2. Apabetalone is a first-in-class BET inhibitor with potentially broad applicability across multiple disease indications

3. Addresses critical unmet need with 12 million+ patients in top 8 markets

4. Lead program has completed enrollment of Phase 3 trial for high risk CVD patient population

5. Well established safety profile – to date, over 1,900 patients treated with Apabetalone with no significant safety issues

6. Proven track record of funding development while minimizing shareholder dilution

7. Robust intellectual property position for composition, use, and manufacturing, with patent life ranging from 2027 to 2034
Apabetalone Clinical Trials to Date

Completed Trials

- **Phase 1a**
 - First-in-man single ascending dose and 7-day multiple dosing
 - n=80

- **Phase 1 BE**
 - Single dose bioequivalency comparing capsule and tablet drug form
 - n=7

- **Phase 1b/2a**
 - 28 day multiple dosing safety, tolerability and efficacy in healthy volunteers with low HDL
 - n=72

- **Phase 2**
 - **ASSERT**
 - 12 week dose-ranging safety, tolerability and efficacy in stable CVD patients
 - n=299

 - **SUSTAIN**
 - 24 week single-dose safety, tolerability and efficacy in stable CVD patients with low HDL
 - n=176

 - **ASSURE**
 - Pre-diabetes mellitus / effects of RVX-208 and ApoA-I production on glucose metabolism
 - n=323

 - **Pre-Diabetes**
 - PK assessment in patients with severe renal impairment
 - n=20

- **Phase 2b**
 - **Pre-Diabetes**
 - 26 week risk-stratified IVUS study in patients with low HDL
 - n=20

- **Phase 3 BETonMACE**
 - Chronic Kidney Disease - Phase 2
 - n=2,400+

Current and Planned Trials

- **Secondary prevention of MACE in patients with diabetes and low HDL**
 - Planned following BETonMACE

- **Measure changes in MoCA score for patients undergoing treatment vs. placebo**
 - Planned following BETonMACE

- **Proof-of-concept in orphan disease indication**
 - Planned following BETonMACE

Apabetalone (RVX-208) Clinical Trial Program

- **Completed 2008**
 - Single dose bioequivalency comparing capsule and tablet drug form

- **Completed 2009**
 - Single dose bioequivalency comparing capsule and tablet drug form

- **Completed 2010**
 - 12 week dose-ranging safety, tolerability and efficacy in stable CVD patients

- **Completed 2012**
 - 24 week single-dose safety, tolerability and efficacy in stable CVD patients with low HDL

- **Completed 2013**
 - 26 week risk-stratified IVUS study in patients with low HDL

- **Completed 2014**
 - Pre-diabetes mellitus / effects of RVX-208 and ApoA-I production on glucose metabolism

- **Completed 2016**
 - PK assessment in patients with severe renal impairment

- **Fully Enrolled**
 - Secondary prevention of MACE in patients with diabetes and low HDL

Pre-Designated Indication

- **Fabry Disease - Phase 2**

- **Pulmonary Arterial Hypertension - Phase 2**

- **Vascular Cognitive Dementia - Phase 2**
RVX-208, an Inducer of ApoA-I in Humans, Is a BET Bromodomain Antagonist

Adapted from: Campbell, AE. et al. 2017

Benefit of Apabetalon on Plasma Proteins in Renal Disease

Apabetalone Mediated Epigenetic Modulation is Associated with Favorable Kidney Function and Alkaline Phosphatase Profile in Patients with Chronic Kidney Disease

Apabetalone downregulates factors and pathways associated with vascular calcification
Recent high profile publications illustrate apabetalone-induced activation of latent HIV-1 in vitro and ex vivo

Suggest that Apabetalone synergistically reactivated latent HIV-1 and could combine with cART drugs to inhibit viral infection

The BET bromodomain inhibitor apabetalone induces apoptosis of latent HIV-1 reservoir cells following viral reactivation

Xuan-xuan Zhang¹, Jian Lin¹, Tai-zhen Liang¹, Heng Duan², Xing-hua Tan², Bao-min Xi¹, Lin Li¹ and Shu-wen Liu¹

OPEN
BET inhibitors RVX-208 and PFI-1 reactivate HIV-1 from latency
Panpan Lu¹, Xinzong Shen², Ha Yang³, Yanan Wang⁴, Zhengtao Jiang⁵, Xinyi Yang⁶, Yangzheng Zhong⁷, Hanyu Pan⁸, Jiangling Xu⁹, Hongshou Lu¹⁰ & Huanzhang Zhu¹¹
BET Technology Goes Mainstream
Zenith Epigenetics