Forward Looking Statement

This presentation may contain certain forward-looking information as defined under applicable Canadian securities legislation, that are not based on historical fact, including without limitation statements containing the words "believes", "anticipates", "plans", "intends", "will", "should", "expects", "continue", "estimate", "forecasts" and other similar expressions. In particular, this presentation may include forward looking information relating to the Phase 3 BETonMACE clinical trial, vascular cognitive dementia, chronic kidney disease, fabry disease and pulmonary arterial hypertension clinical trials, and the potential role of apabetalone in the treatment of high-risk cardiovascular disease, diabetes mellitus, chronic kidney disease, end-stage renal disease treated with hemodialysis, neurodegenerative disease, Fabry disease, peripheral artery disease and other orphan diseases. Our actual results, events or developments could be materially different from those expressed or implied by these forward-looking statements. We can give no assurance that any of the events or expectations will occur or be realized. By their nature, forward-looking statements are subject to numerous assumptions and risk factors including those discussed in our Annual Information Form and most recent MD&A which are incorporated herein by reference and are available through SEDAR at www.sedar.com. The forward-looking statements contained in this news release are expressly qualified by this cautionary statement and are made as of the date hereof. The Company disclaims any intention and has no obligation or responsibility, except as required by law, to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.

Contact
Investor Relations
Email: ir@resverlogix.com
Phone: 403-254-9252
Website: www.resverlogix.com
Resverlogix at a Glance

- Late-stage clinical biotechnology company that has built a leadership position in epigenetics

- Lead product candidate is **Apabetalone**, a first-in-class small molecule selective bromodomain extra-terminal (BET) protein inhibitor with broad applicability for cardiovascular, renal and other disease indications

- **Phase 3 trial** for secondary prevention of MACE in patients with diabetes (type 2) and low HDL reaches targeted 250 events; **top line read-out expected early H2 2019**

- Attractive safety profile, with over **1,900 patients dosed** and eight successful DSMB readouts in Phase 3

- Addresses critical unmet need with **12 million+ patients** in top 8 markets

- Robust intellectual property position for composition, use, and manufacturing, with **patent life ranging from 2027 to 2034**

Resverlogix Summary

<table>
<thead>
<tr>
<th>Stock Symbol</th>
<th>TSX: RVX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Cap</td>
<td>~US$600M¹</td>
</tr>
<tr>
<td>Shares Outstanding</td>
<td>200M¹</td>
</tr>
</tbody>
</table>

¹ As at April 22, 2019
<table>
<thead>
<tr>
<th>Apabetalone Indication</th>
<th>Pre-clinical</th>
<th>Phase 1</th>
<th>Phase 2 Ready</th>
<th>Phase 3</th>
<th>Status Est.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Coronary Syndrome (ACS) - BETonMACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiation: 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trial completion estimate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>early H2 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular Cognitive Dementia*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiation: H2 2019</td>
</tr>
<tr>
<td></td>
<td>19% of BETonMACE participants in VCD subgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic Kidney Disease*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiation: H2 2019</td>
</tr>
<tr>
<td></td>
<td>11% of BETonMACE participants in CKD subgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabry disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiation: H2 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary Arterial Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiation: H2 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* To Initiate following BETonMACE trial completion

19% of BETonMACE participants in VCD subgroup
11% of BETonMACE participants in CKD subgroup
Addressing Critical Unmet Needs

Cardiovascular Disease
Still the number one killer of both males and females and costs the US healthcare system over $500B per year

Current CVD Therapies - 30%
- Statins are the top medication used to treat CVD
- Despite maximized use, current therapies only manage about 30% of CVD events

60% Opportunity
Huge market potential resides in the remaining 60% unmet need in CVD management

New LDL Modulators - 10%
Several new types of LDL modulators are in clinic. Leading are the very expensive PCSK9’s

Diabetes Epidemic
Diabetes prevalence; will increase by 55% in the next 30 years, with the Middle east region showing an increase of 96%.

Globally 382 Million People living with diabetes
46% Undiagnosed
Overview of Epigenetics

- The epigenetic code refers to modifications to chromatin components that regulate its activity.
- Turning genes on or off is regulated by these modifications.
- BET (Bromodomain and Extraterminal Domain) proteins recognize these modifications and turn genes on.
Our Differentiated BET Platform

- Resverlogix has discovered compounds that **selectively** bind the bromodomains of BET proteins
 - Bromodomain selectivity: Resverlogix’s Apabetalone selectively targets BD2
 - BET (BRD2, BRD3, BRD4) protein selectivity: Our expertise in medicinal chemistry and epigenetics allows us to identify small molecules that target one or a specified subset of BET proteins

- Our Phase 2 clinical program provided us with what was **the only blood bank of BET inhibitor-treated patients in the world**
 - In-depth analysis of proteomics, genomics, and pathways revealed advanced knowledge of BET activities
 - The resulting knowledge from these activities provided a level of sophistication around BET that surpasses that of many others working in this area

- The properties of Resverlogix’s molecules **avoid side effects seen with other BETi**
 - BET programs in oncology can tolerate a high degree of side effects due to the nature of the disease being treated
 - Chronic conditions such as cardiovascular disease and renal impairment require treatments with a side-effect profile acceptable for long-term treatment
Unique Mechanism of Action

Transcriptional Regulation
- Mechanism is based on changing the levels of disease causing proteins by modulating their expression at the gene level.
- **Apabetalone** – reduces expression of disease mediators

Genome Editing
- The mechanism is based on cutting and pasting undesired/desired sequences into or out of the DNA, thereby altering the gene sequence and then re-introducing the modified DNA into the body.
- **CRISPR** – gene editing within a cell sub population

Protein Targeting
- Focus on reducing or blocking the activity of one disease protein by using an inhibitor or antibody.
- **Antibody or Inhibitor** – blocks activity of one mediator of disease
Apabetalone has demonstrated reductions in alkaline phosphatase (ALP; a strong marker of CKD risk) and improvements in estimated glomerular filtration rate (eGFR) in CKD patients (eGFR < 60 mL/min/1.73m2) with CVD in the phase 2 ASSURE and SUSTAIN trials.

BET inhibition by Apabetalone may have the potential to improve kidney function, as measured by eGFR, in patients suffering from various stages of kidney disease.

Resverlogix is currently investigating the potential for expansion into specific kidney indications:
- CKD (Stages 3a and 3b) patients, with a history of CVD (Phase 3 BETonMACE subgroup)
- High Risk CKD Patients on Dialysis (Phase 2b BETonRenal study)
A Phase I, Open-Label, Parallel Group Study to Evaluate the Safety and Pharmacokinetics of a Single Oral Dose of Apabetalone in Subjects with Severe Renal Impairment

Cohort 1
Previously diagnosed with CKD (stage IV) and not on dialysis (eGFR <30 mL/min/1.73m²) N=8

Cohort 2
Volunteers matched for age (±10 years), weight (±20%), and gender with the subjects in Cohort 1 (renal impaired subjects); eGFR ≥60 mL/min/1.73m² N=8

Apabetalone 100mg single dose

Day 1
Day 2
Day 3
Day 7

screening period

pre-dose
6 hours
12 hours
24 hours
48 hours

dose administration

Trial demonstrated that Apabetalone has a highly differential effect on protein levels based on disease status, healthy vs sick, reducing a variety of plasma proteins and downregulating pathways activated in the CKD cohort
SOMAscan® Analysis of Plasma Proteome in CKD Patients
IPA Canonical Pathways

Dendritic cell maturation

Th1 pathway

NF-κB Signaling

Acute Phase Response

Wasiak et al., 2017

\[\Delta > 10\% \ p \leq 0.05 \]
SOMAscan® Analysis of Plasma Proteome
IPA Canonical Pathways: Top 5 Pathways Upregulated at Baseline

- **Dendritic cell maturation**
- **Th1 pathway**
- **NF-κB Signaling**
- **IL-6 Signaling**
- **Acute Phase Response**

Baseline

Wasiak et al., 2017
SOMAscan® Analysis of Plasma Proteome
IPA Canonical Pathways: Top 5 Pathways Downregulated with Apabetalone

Dendritic cell maturation

Apabetalone

IL6 Signaling

Th1 pathway

NF-κB Signaling

Acute Phase Response

Wasiak et al., 2017

D > 10% p ≤ 0.05
SOMAscan® Analysis of Plasma Proteome – Phase 1 Trial

Apabetalone Reduces CVD and CKD Biomarkers

Apabetalone reduces markers of inflammation, cell adhesion, matrix remodeling, calcification and thrombosis in the CKD cohort after one dose and 12 hours.

```
<table>
<thead>
<tr>
<th>Protein Name</th>
<th>Gene Symbol</th>
<th>Subjects with CKD (stage IV) (n=8) treated with 100 mg Apabetalone</th>
<th>Matched Control Subjects (n=8) treated with 100 mg Apabetalone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% Δ from baseline at 12h</td>
<td>p-value</td>
</tr>
<tr>
<td>Interleukin-6</td>
<td>IL6</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Interleukin-1 alpha</td>
<td>IL1A</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Interferon gamma</td>
<td>IFNG</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>TNF receptor superfamily member 1A</td>
<td>TNFRSF1A</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>CRP</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Tumor necrosis factor</td>
<td>TNF</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>P-selectin</td>
<td>SELP</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>E-selectin</td>
<td>SELE</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Intercellular adhesion molecule 1</td>
<td>ICAM1</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Vascular cell adhesion protein 1</td>
<td>VCAM1</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Fibronectin</td>
<td>FN1</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Stromelysin-1</td>
<td>MMP3</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Stromelysin-2</td>
<td>MMP10</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Osteopontin</td>
<td>SPP1</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Plasminogen activator inhibitor 1</td>
<td>SERPINE1</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Tissue-type plasminogen activator</td>
<td>PLAT</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Urokinase-type plasminogen activator</td>
<td>PLAU</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>D-dimer</td>
<td>FGA/B/C</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Urokinase plasminogen activator surface receptor</td>
<td>PLAUR</td>
<td></td>
<td>0.02</td>
</tr>
</tbody>
</table>
```

*"NS": not significant
Wasiak et al., 2017*
Apabetalone, a bromodomain extra-terminal (BET) protein inhibitor, regulates the expression of genes and restores the function of pathways underlying the pathogenesis of CVD and kidney disease.

- Reduced incidence of MACE
- Reduced oral glucose absorption and endogenous production
- Increased ApoA-I, positive effects on lipid content of HDL
- Decreased and reduced oral glucose absorption and endogenous production
- Reduced incidence of MACE
Critical Conclusions from our Phase 2 CVD Trials (ASSERT, ASSURE and SUSTAIN) Nicholls et al. 2018 Am J Cardiovasc Drugs

MACE: Major Adverse Cardiac Events including: death, myocardial infarction, stroke, coronary revascularization, hospitalization for acute coronary syndrome or heart failure

Decrease in MACE was most profound in patients who had a higher level of inflammation and patients with diabetes.
BETonMACE Phase 3 Trial

Trial completion expected early H2 2019

- **2,400 + subjects**
 - double blinded
 - 1-2 week statin run-in

Diagram:
- atorvastatin or rosvastatin run-in
- Apabetalone 200mg daily + standard of care
- placebo + standard of care
- safety follow-up

- standard of care includes 20-80 mg atorvastatin or 10-40 mg rosvastatin

- 1-2 weeks
- treatment duration up to 3 yrs
- 4-16 weeks

- screening
- randomization (1:1)
- end of treatment

The study is an event-based trial and continues until 250+ narrowly defined MACE events have occurred

Key inclusion criteria
- Type II Diabetes Mellitus
 - HbA1c > 6.5% or history of diabetes medications
- CAD event 7 days - 90 days prior to screening
 - Myocardial infarction (MI) or unstable angina with or without percutaneous coronary intervention to manage acute coronary syndrome
- HDL < 1.04 for males and < 1.17 for females
High Risk Acute Coronary Syndrome (ACS) Patients with a Type II Diabetes Mellitus (DM) Comorbidity and Low High-Density Lipoprotein Cholesterol (HDL-C)

<table>
<thead>
<tr>
<th>Phase 3 BETonMACE</th>
<th>Efficacy Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Primary endpoint: Time to the first occurrence of Major Adverse Cardiovascular Events (MACE) defined as CVD death; non-fatal myocardial infarction (MI); non-fatal ischemic stroke</td>
</tr>
<tr>
<td></td>
<td>- Secondary endpoints include: hospitalization for unstable angina, emergency revascularization procedures, and all-cause mortality</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subgroup Analysis</th>
<th>Primary endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Assess potential improvement in kidney function, MACE, and renal serious adverse events (SAEs) (one time 40% or greater reduction in eGFR or doubling of serum creatinine) in population with baseline estimated GFR<60mL/min (stage 3+ CKD)</td>
</tr>
<tr>
<td></td>
<td>- Assess potential cognitive improvement based on a MoCA (Montreal Cognitive Assessment) in patients older than 70 years of age</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expected Efficacy Outcomes</th>
<th>Primary endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- 30% relative risk reduction of MACE with statistical significance vs placebo with average treatment duration of 22-24 months of treatment on top of current standard of care</td>
</tr>
<tr>
<td></td>
<td>- Significant or trending results in defined subgroups such as CKD and cognition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unique Selling Points</th>
<th>Primary endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Novel mechanism of action with multi-factorial approach for the reduction of MACE in high risk ACS patients</td>
</tr>
<tr>
<td></td>
<td>- Orally available small molecule with low projected COGS and price compared to monoclonal antibodies and peptides</td>
</tr>
<tr>
<td></td>
<td>- Potential for alternate indications and increased accretive value based on subgroup analysis of BETonMACE, proteomic analyses of serum data from past Phase 2 trials and early pre-clinical work</td>
</tr>
</tbody>
</table>
Apabetalone has already been tested in over 1,900 patients in 18 countries around the world, 14 countries have already approved Phase 3 usage.
BETonMACE Clinical Trial Analysis Points and Time Lines

- Last Study Visits (LSV) have commenced (April 18 NR); sites with the most patients enrolled will commence first, followed by the others
 - Allows for additional time to build MACE events to ~260 or greater while not slowing down the trial’s move towards final database lock
- Three to four weeks after the LSV, a post-treatment follow-up visit will take place to ensure that any safety issues continue to be monitored
- In parallel, DSMB will continue to adjudicate remaining and ongoing potential MACE events. Current adjudicated events exceed 90% of the 250
- All patients who have discontinued the study will also be contacted for an unscheduled follow-up visit or call to determine medical status
- Database Lock (DBL) will occur after the last patient’s final visit and the last query is resolved
- Approximately two weeks after DBL, the primary endpoint and additional secondary and exploratory endpoints are expected to be announced
- H2 2019 and beyond – full outcomes, pre-specified endpoint data, safety results, and clinical implications will be reported and published
Committee Members for BETonMACE

Clinical Advisory Board

<table>
<thead>
<tr>
<th>Member</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Kausik K. Ray, BSc (hons), MBChB, MD, MPhil (Cantab), FACC, FAHA, FESC, FRCP; Chairman Imperial College</td>
<td></td>
</tr>
<tr>
<td>Dr. Gregory G. Schwartz, MD, PhD</td>
<td>University of Colorado Denver</td>
</tr>
<tr>
<td>Dr. Stephen Nicholls, MBBS, PhD</td>
<td>South Australian Health and Medical Research Institute</td>
</tr>
<tr>
<td>Dr. Henry N. Ginsberg, MD, FAHA</td>
<td>Columbia University</td>
</tr>
<tr>
<td>Dr. Peter P. Toth, MD, PhD, FAAP, FICA, FAHA, FNLA, FCCP, FACC</td>
<td>CGH Medical Center</td>
</tr>
<tr>
<td>Dr. Kamyar Kalantar-Zadeh, MD, MPH, PhD, FAAP, FACP, FASN, FAHA, FNKF</td>
<td>University of California Irvine</td>
</tr>
</tbody>
</table>

Recent High Profile Publications

<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apabetalone downregulates factors and pathways associated with vascular calcification – Atherosclerosis 2018</td>
<td></td>
</tr>
<tr>
<td>The Effect of Bromodomain and Extra-Terminal Inhibitor Apabetalone on Attenuated Coronary Atherosclerotic Plaque: Insights from the ASSURE Trial – American Journal of Cardiovascular Drugs 2018</td>
<td></td>
</tr>
<tr>
<td>Apabetalone Mediated Epigenetic Modulation is Associated with Favorable Kidney Function and Alkaline Phosphatase Profile in Patients with Chronic Kidney Disease – Kidney and Blood Pressure Research 2018</td>
<td></td>
</tr>
<tr>
<td>Benefit of Apabetalone on Plasma Proteins in Renal Disease-KI Reports 2018</td>
<td></td>
</tr>
<tr>
<td>Selective BET Protein Inhibition with Apabetalone and Cardiovascular Events: A Pooled Analysis of Trials in Patients with Coronary Artery Disease- American Journal of Cardiovascular Drugs 2017</td>
<td></td>
</tr>
<tr>
<td>Downregulation of the Complement Cascade In Vitro, in Mice and in Patients with Cardiovascular Disease by the BET Protein Inhibitor Apabetalone (RVX-208)- Journal of Cardiovascular Translational Research 2017</td>
<td></td>
</tr>
<tr>
<td>RVX-208, a BET-inhibitor for treating atherosclerotic cardiovascular disease, raises ApoA-I/HDL and represses pathways that contribute to cardiovascular disease- Atherosclerosis 2016</td>
<td></td>
</tr>
</tbody>
</table>
Apabetalone is a first-in-class, small molecule that is a selective BET inhibitor that produces a specific set of biological effects with important benefits while maintaining a well described safety profile. It is currently being evaluated for the following indications:

1. High Risk Acute Coronary Syndrome (ACS) Patients with a Type II Diabetes Mellitus (DM) Comorbidity and Low High-Density Lipoprotein Cholesterol (HDL-C) - 1.9 M Patients by 2032

2. High Risk Chronic Kidney Disease (CKD) Patients (Stages 3-5, Pre-Dialysis) with a Diabetes Mellitus Comorbidity and a History of Cardiovascular Disease (CVD) - 6.6 M Patients by 2032

3. Dementia and Vascular Cognitive Dementia (MoCA score < 26) in Elderly (>65 years) Patients with Diabetes Mellitus Comorbidity and a History of CVD - 3.2 M Patients by 2032
Additional Indications

• Complement Mediated Disease: orphan indication
• Neurofibromatosis – Malignant Peripheral Nerve Sheath Tumors (MPNST): orphan indication
• Pulmonary Arterial Hypertension: orphan indication
• Muscular Dystrophy/Facio Scapulo Humeral Dystrophy: orphan indication
• Fabry Disease: orphan indication
• Vascular Cognitive Dementia
• HIV eradication
Business Development Strategy

- Partnered Apabetalone in Greater China (China, Hong Kong, Taiwan and Macau) with Shenzhen Hepalink Pharmaceutical, a ~US$4 billion market cap company listed in China
 - US$35M initial equity investments in Resverlogix (total now exceeds US$100M)
 - >US$400M in projected future sales milestones and licensing royalties
 - Hepalink responsible for all development costs in Greater China
- Exclusive licensing agreement with Medison Pharma Ltd. for Apabetalone in Israel
 - >US$100M in projected licensing royalties
- Discussing licensing opportunities in the Middle East / North Africa
- Exploring global licensing options (ex-Greater China and Middle East) for Apabetalone post Phase 3 readout
Highlights

• Global leader in epigenetic research and drug development

• Apabetalone is a first-in-class BET inhibitor with potentially broad applicability across multiple disease indications

• Addresses critical unmet need with 12 million+ patients in top 8 markets

• Phase 3 trial for high risk CVD patient population reaches targeted 250 MACE events; top line read-out expected early H2 2019

• Well established safety profile – to date, over 1,900 patients treated with Apabetalone with no significant safety issues

• Proven track record of funding development while minimizing shareholder dilution

• Robust intellectual property position for composition, use, and manufacturing, with patent life ranging from 2027 to 2034
Appendix
Management Team

Donald McCaffrey
President & Chief Executive Officer
• Co-founded Resverlogix in 2001 with Dr. Norman Wong
• Has over 40 years of corporate management experience, including over 18 years in drug discovery & development

Dr. Norman C.W. Wong, M.D., FRCP,
Chief Scientific Officer & Co Founder
• Co-founded Resverlogix in 2001 with Donald McCaffrey
• Researches molecular actions of hormones related to the regulation of gene expression and pathogenesis of diabetes mellitus

A. Brad Cann, CA, Chief Financial Officer
• Has over 20 years of experience in a variety of financial and business roles
• Leads the Company’s expanding financial activities supporting advancing scientific and clinical development

Dr. Ewelina Kulikowski,
Ph.D., SVP, Research & Development
• Joined in 2005 as Director of Research and Development
• Has been involved in the development of lead drug RVX-208 from its discovery through to Phase 3 clinical development

Dr. Michael Sweeney, M.D., SVP,
Clinical Development
• Cardiologist with extensive experience in pharmaceutical product development and marketing
• Has over 30 years in the pharmaceutical industry, including 11 years at Pfizer

Kenneth Lebioda, BA, SVP, Business & Corporate Development
• Has over 30 years of experience in the innovative pharmaceutical industry with leading global companies such as Bristol-Myers Squibb, Hoechst Marion Roussel and Marion Merrell Dow

Dr. Jan O. Johansson, M.D., Ph.D.,
SVP, Medical Affairs
• Has had a distinguished 35 year career in academia and in the pharmaceutical industry of which including various companies with expertise in the cardio-metabolic and neurological disease therapeutic area

Dr. Henrik C. Hansen, Ph.D., VP,
Intellectual Property
• Has 20 years in drug discovery & development experience.
• Areas of expertise also include medicinal chemistry, process development and manufacturing of drug substances and products for clinical use

Paul Moon, CPIR
VP, Investor Relations and Communications
• Has over 25 years of public company experience working in multiple industries, including: technology, financial services, real estate, international mining, and oil and gas
Apabetalone Clinical Trials to Date

Completed Trials

- **Phase 1a**
 - n=80
 - Completed 2008
 - First-in-man single ascending dose and 7-day multiple dosing

- **Phase 1 BE**
 - n=7
 - Completed 2009
 - Single dose bio-equivalency comparing capsule and tablet drug form

- **Phase 1 BE**
 - n=9
 - Completed 2009
 - Single dose bio-equivalency comparing capsule and tablet drug form

- **Phase 1b/2a**
 - n=72
 - Completed 2010
 - 28 day multiple dosing safety, tolerability and efficacy in healthy volunteers with low HDL

- **Phase 2**
 - ASSERT n=299
 - Completed 2012
 - 12 week dose-ranging safety, tolerability and efficacy in stable CVD patients

- **Phase 2b**
 - SUSTAIN n=176
 - Completed 2013
 - 24 week single-dose safety, tolerability and efficacy in stable CVD patients with low HDL

- **Phase 2b**
 - ASSURE n=323
 - Completed 2014
 - 26 week risk-stratified IVUS study in patients with low HDL

- **Phase 2b**
 - Pre-Diabetes n=20
 - Completed 2013
 - Pre-diabetes mellitus / effects of RVX-208 and ApoA-I production on glucose metabolism

- **Phase 1 PK Study**
 - n=16
 - Completed 2016
 - PK assessment in patients with severe renal impairment

- **Phase 3 BETonMACE**
 - n=2,400+
 - Completed 2016
 - Secondary prevention of MACE in patients with diabetes and low HDL

Current and Planned Trials

- **Chronic Kidney Disease - Phase 2**
 - Planned following BETonMACE
 - Patients with low baseline eGFR evaluated for improvement in renal function vs. placebo

- **Vascular Cognitive Dementia - Phase 2**
 - Planned following BETonMACE
 - Measure changes in MoCA score for patients undergoing treatment vs. placebo

- **Fabry Disease - Phase 2**
 - Planned following BETonMACE
 - Proof-of-concept in orphan disease indication

- **Pulmonary Arterial Hypertension - Phase 2**
 - Planned following BETonMACE
 - Proof-of-concept in orphan disease indication

Apabetalone (RVX-208) Clinical Trial Program
RVX-208, an Inducer of ApoA-I in Humans, Is a BET Bromodomain Antagonist

Benefit of Apabetalone on Plasma Proteins in Renal Disease

Apabetalone downregulates factors and pathways associated with vascular calcification
Recent High Profile Publications

- Recent high profile publications illustrate apabetalone-induced activation of latent HIV-1 in vitro and ex vivo
- Suggest that Apabetalone synergistically reactivated latent HIV-1 and could combine with cART drugs to inhibit viral infection

Acta Pharmacologica Sinica

ARTICLE
The BET bromodomain inhibitor apabetalone induces apoptosis of latent HIV-1 reservoir cells following viral reactivation

Xuan-xuan Zhang1, Jian Lin1, Tai-zhen Liang1, Heng Duan3, Xing-hua Tan3, Bao-min Xi1, Lin Li1 and Shu-wen Liu1

SCIENTIFIC REPORTS

OPEN
BET inhibitors RVX-208 and PFI-1 reactivate HIV-1 from latency

Pappan Li1, Xinlong Shen2, He Yang1, Yanan Wang1, Zhengtao Liang1, Xinli Yang1, Yangdong Zhong1, Hanyu Pan4, Jiawen Xu1, Hengshou Lu1 & Huazhong Zhu1
BET Technology Goes Mainstream
Zenith Epigenetics