

Apabetalone (RVX-208) inhibits key pro-atherogenic mediators and pathways in diabetes and inflammatory conditions; in vitro and in patients

Laura M. Tsujikawa¹, Brooke D. Rakai¹, Shovon Das¹, Christopher Halliday¹, Li Fu¹, Dean Gilham¹, Chris Sarsons¹, Sylwia Wasiak¹, Stephanie C. Stotz¹, Kristina D. Rinker³, Deborah Studer³, Michael Sweeney², Jan O. Johansson², Norman C. Wong¹ and Ewelina Kulikowski¹ Resverlogix Corp. ¹Calgary, Canada, ²San Francisco, USA, Calgary, and ³Department of Chemical and Petroleum Engineering, Calgary, AB, Canada

Glucose GLU UP ME GLU+Apa5 DN TNFa induced molecular function GO gene sets suppressed by low and high

chemokine receptor binding (GO:0042379) cytokine receptor binding (GO:0005126)

IPA[®] predicts apabetalone inhibition of TNF α -activated proinflammatory pathways, regulators, and diseases in endothelial cells

Tables consist of Z-scores which $\geq 2 = activation$ and $\leq 2 = activation$

Canonical Pathway	TNFα
TREM1 Signaling	3.8
Acute Phase Response Signaling	3.8
IL-6 Signaling	3.7
Dendritic Cell Maturation	3.7
Renin-Angiotensin Signaling	3.5
HMGB1 Signaling	3.4
NF-κB Signaling	3.4
IL-8 Signaling	3.4
Type I Diabetes Mellitus Signaling	3.0

Diseases and Bio Functions Migration of cells Cell movement Cell movement of phagocytes Activation of cells Homing of cells Cell movement of myeloid cells Activation of leukocytes

lFα	TNFα+A
.0	-1.
.9	-1.
.4	-1.
.3	-2.
.2	-1.
.2	-0.
_	_

IPA[®] predicts apabetalone inhibtion of TNF α and pro-atherogenic pathways in CVD patient proteome

Bioinformatics (IPA[®]) Analysis of the Plasma Proteome (SOMAscan[™]) **ASSERT** phase II trial: Apabetalone treatment vs. placebo

Ingenuity[®] Pathway Analysis

Upstream Regulator⁺

Canonical Pathway++

Intrinsic

Acute Ph

Coagulat

Leukocyt

Plasma proteins input cutoff = 10% (vs. placebo, p<0.05) were analyzed with the IPA® *IPA[®] z-score compares the observed regulation of genes in the dataset to changes observed in the literature. z-score <-2 predicts inhibition [§]The p-value of overlap is calculated using Fisher's Exact Test. ⁺Apabetalone treated CVD patients +T2DM (n=7)vs. placebo treated CVD patients +T2DM (n=5). ⁺⁺Apabetalone treated patients (n=25) vs. all placebo treated patients (n=30)both CVD and CVD+T2DM.

HUVEC Nanostring gene expression data (1.3x cutoff) was uploaded into IPA[®] (Ingenuity Pathway Analysis).

α+Apa 5uM	TNFα+Apa 20uM
-1.8	-3.1
-1.6	-3.1
-0.8	-2.2
-2.2	-4.0
0.4	-2.1
-1.1	-2.2
-1.4	-2.9
0.4	-1.7
-2.1	-3.1
	D < 0.01

Upstream Regulators
lipopolysaccharide
TNF
NFkB (complex)
IL1B
poly rI:rC-RNA
TLR4
TICAM1
MYD88
TLR3
IL1A
RELA

TNFα	$TNF\alpha$ + Apa 5 uM	TNFα+Apa 20uM
6.3	-3.3	-4.3
6.1	-2.6	-4.2
5.9	-2.7	-3.5
5.4	-1.9	-3.3
5.4	-3.9	-4.1
5.2	-3.3	-4.4
5.1	-2.7	-4.5
5.1	-3.1	-4.1
5.0	-3.3	-3.5
4.9	-2.2	-1.8
4.8	-1.9	-2.7

RESVERLOGI

ba SuM -4.2 -3.4

-3.5 P< 1x10^-17

Apabetalone reverses the TNF α induced activation of pro-inflammatory and proatherogenic pathways, upstream regulators, and diseases and biological functions

-	-	
Regulator/Pathway	Activation z-score*	p-value of overlap [§]
TNFα	-2.31	<0.001
Prothrombin Activation Pathway	-2.23	<0.001
ase Response Signaling	-2.12	<0.001
ion System	-2.00	<0.001
e Extravasation Signaling	-2.00	0.002