Apabetalone (RVX-208) attenuates inflammatory milieu underlying adhesion RESVERLOGIX of monocytes to endothelial cells in T2DM with CVD patients

Laura M. Tsujikawa¹, Brooke D. Rakai¹, Li Fu¹, Shovon Das¹, Christopher Halliday¹, Chris Sarsons¹, Emily Daze¹, Sylwia Wasiak¹, Dean Gilham¹, Kristina D. Rinker³, Jan O. Johansson², Michael Sweeney², Norman C. Wong¹ and Ewelina Kulikowski¹ Resverlogix Corp. ¹Calgary, AB, Canada, ²San Francisco, USA, and ³Department of Chemical and Petroleum Engineering, University of Calgary, AB, Canada

ABSTRACT

Aim: To explore mechanisms behind the 57% relative risk reduction of major adverse cardiovascular events (MACE) in patients (pts) with type 2 diabetes mellitus (T2DM) and CVD given 200 mg apabetalone (APL, RVX-208, inhibitor of bromodomain and extra-terminal [BET] proteins that are epigenetic readers of histone acetylated lysine). **Method:** SOMAscan proteomics of patient plasma given APL (n=25) or placebo (n=30) and cultured monocyte (THP-1) or endothelial (HUVEC) cells.

Results: Plasma proteomics from CVD+/-T2DM pts given APL or placebo showed changes in 4 well-known pathologic pathways and inflammation triggered by TNF α underpinning CVD. Proteins induced by TNF α (p<0.001; z-score = 2.270) were attenuated by APL (p<0.001; z-score = -2.308). To replicate this inflammatory milieu, TNF α (10 ng/ml) or high glucose (HG, 25.6 mM) was added to co-cultures of THP-1 and HUVEC leading to enhanced adhesion 12- and 2.4-fold, respectively but inhibited by APL (44-32%). Very Late Antigen-4 (VLA-4) a THP-1 adhesion mRNA rose 1.3-fold in HG and APL suppressed it >50%. Similarly, E-selectin, MCP-1, and MYD88 mRNAs that mediated adhesion rose by 2-, 2- and 1.3-fold, respectively in HUVECs exposed to HG while APL attenuated (30-90%). Furthermore, Nanostring data from HUVECs showed HG induced many inflammatory genes underlying CVD but APL blocked ~90% of these. Gene Set Enrichment and functional Gene Ontology Analysis showed many inflammatory and immunoregulatory genes were positively impacted by HG but negatively affected by APL.

Normoglycemia Hyperglycemia Blood Flow Rolling and Slow Rolling Firm Adhesion Transmidration CXCL Plaque Circulating IL-1β and/or

SUMMARY

Summary: APL lowers MACE in T2DM and CVD pts by attenuating monocyte adhesion to endothelial cells and thereby possibly reducing atheroma formation.

- Apabetalone suppresses all pro-atherogenic mediators shown above
- BET-dependent downregulation of vascular inflammation and cell adhesion by apabetalone may contribute to the reduction in MACE, a hypothesis currently being tested in the phase 3 cardiovascular outcomes trial BETONMACE in in post-Acute Coronary Syndrome patients with CVD, diabetes mellitus and low HDL-c.

Glucose +

20 uM Apa

5 uM Apa

Yellow star indicates selectivity of apabetalone for BD2.

Bolded gene: highlighted genes in abstract

nCounter[®] Inflammation Panel (Human v2)

MACE: Major Adverse Cardiac Events including: death, myocardial infarction, stroke, coronary revascularization, hospitalization for acute coronary syndrome or heart failure

Apabetalone suppresses monocyte adhesion to endothelial cells

Apabetalone inhibits high glucose induced pro-atherogenic gene expression in monocytes and endothelial cells

GLU+Apa20 DN

GO

Overlap of the gene sets with \geq 20 fold enrichment with p < 0.05

GO_IMMUNE_RESPONSE GO_DEFENSE_RESPONSE GO CELLULAR RESPONSE TO ORGANIC SUBSTANCE GO_POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS

Top GSEA gene sets impacted are GO biological processes

Performed GO analysis based on molecular function to find contributors driving the effects on GO biological processes

Unique low dose apabetalone effects pattern recognition receptor activity (GO:0038187) signaling pattern recognition receptor activity (GO:0008329)

Top 5/5: Glucose induced gene sets suppressed by both low and high dose apabetalone chemokine activity (GO:0008009) chemokine receptor binding (GO:0042379) cytokine activity (GO:0005125) icosanoid receptor activity (GO:0004953) cytokine receptor binding (GO:0005126)

Nanostring gene expression data from the human inflammation gene panel was uploaded into GSEA and GO \rightarrow cutoff = 10%

IPA[®] predicts apabetalone inhibition of TNF α and pro-atherogenic pathways in ASSERT CVD patient proteome

Bioinformatics (IPA[®]) Analysis of the Plasma Proteome (SOMAscan[™]) **ASSERT** phase II trial: Apabetalone treatment vs. placebo

Ingenuity [®] Pathway Analysis	Regulator/Pathway	Activation z-score*	p-value of overlap [§]
Upstream Regulator ⁺	ΤΝFα	-2.31	<0.001
Canonical Pathway++	Intrinsic Prothrombin Activation Pathway	-2.23	<0.001
	Acute Phase Response Signaling	-2.12	<0.001
	Coagulation System	-2.00	<0.001
	Leukocyte Extravasation Signaling	-2.00	0.002

Plasma proteins cutoff = 10% (vs. placebo, p<0.05). *IPA® z-score <-2 predicts inhibition;; p-value = Fisher's Exact Test. ⁺Apabetalone treated CVD patients +T2DM (n=7) vs. placebo treated CVD patients +T2DM (n=5). ⁺⁺Apabetalone treated patients (n=25) vs. all placebo treated patients (n=30)both CVD and CVD+T2DM.

