

Association of Serum Alkaline Phosphatase with CKD and Cognitive Function in Patients with Diabetes and **Acute Coronary Syndrome**

Mathias Haarhaus^{1,2}, Kausik K. Ray³, Gregory G. Schwartz⁴, Ewelina Kulikowski⁵, Jan O. Johansson⁶, Michael Sweeney⁶, Aziz Khan⁵, Christopher Halliday⁵, Kenneth E. Lebioda⁵, Norman C. Wong⁵, Bengt Winblad⁷, Henrik Zetterberg⁸, Vincent Brandenburg⁹, Srinivasan Beddhu¹⁰, Marcello Tonelli¹¹, Carmine Zoccali¹², and Kamyar Kalantar-Zadeh^{13,14}

¹Division of Renal Medicine and Baxter Novum, Karolinska Institutet, Karolinska University of Public Health, Imperial College London, London, United Kingdom; ⁴School of Medicine, University of Institutet, Karolinska University of Public Health, Imperial College London, London, United Kingdom; ⁴School of Medicine, University of Institutet, Karolinska University of Institute Colorado, Aurora, CO, United States; ⁵Resverlogix Corp., Calgary, AB, Canada; ⁶Resverlogix Inc., San Francisco, CA, United States; ⁵Nepartment of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden; ⁸Department of Psychiatry and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden; ⁸Department of Psychiatry and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden; ⁸Department of Psychiatry and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden; ⁸Department of Psychiatry and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden; ⁸Department of Psychiatry and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden; ⁸Department of Psychiatry and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden; ⁸Department of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden; Neurochemistry- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden; 9Department of Cardiology and Hypertension and Medical Service, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States; 12 CNR IFC, Clinical Epidemiology of Renal Diseases and Hypertension, Harold Simmons Center for Kidney Disease Research and Epidemiology, University of California Irvine, School of Medicine, Orange, CA, United States; 14Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA, United States.

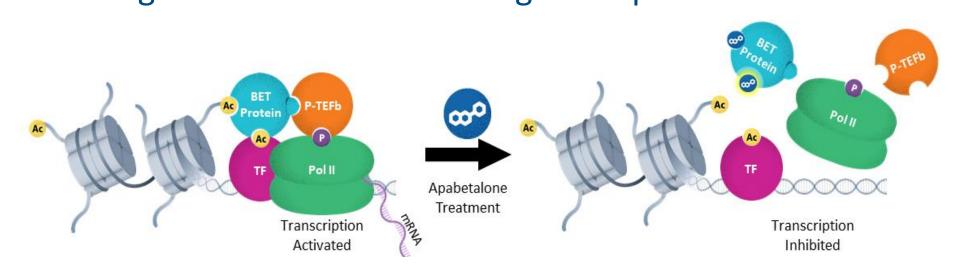
Background

Patients with diabetes and chronic kidney disease (CKD) have an increased risk for cardiovascular disease events and cognitive impairment. Alkaline phosphatase (ALP) is a risk marker and possible risk mediator for cardiovascular (CV) disease. Increased circulating levels of ALP associate with cognitive impairment, Alzheimer's disease and vascular dementia. Possible pathogenic mechanisms linking ALP to impaired cognition include disturbance of the blood brain barrier, impaired microcirculation, and dephosphorylation of tau. Apabetalone, a bromodomain and extraterminal (BET) inhibitor selective for bromodomain 2, lowers serum ALP and is being evaluated for prevention of CV disease events in the phase 3 BETonMACE trial. We examined baseline data from that trial to define the associations of ALP with CKD and cognitive function.

Methods

BETonMACE compares cardiovascular outcomes with apabetalone or placebo in 2,425 patients with diabetes and acute coronary syndrome. CKD was defined by eGFR <60 mL/min/1.73m². Cognition was assessed by the Montreal Cognitive Assessment tool (MoCA) in patients aged 70 and older at baseline (n=469) including in CKD patients (n=147).

Results


CKD was present in 11% (n=262) and was associated with age, female sex, longer history of diabetes, and higher ALP. Approximately half of the population showed MoCA score <26 suggesting early cognitive impairment. Lower MoCA score was associated with: a) higher ALP, and, b) with presence of CKD.

Summary

Elevated serum ALP is associated with poorer cognitive function and greater prevalence of CKD. Apabetalone, which lowers ALP, is being evaluated for effects on CV events, CKD, and cognitive function in the Phase 3 BETonMACE trial reporting 2019.

Apabetalone Mechanism of Action

BET proteins control gene transcription through interactions with transcription factors and recruitment of RNA polymerase II. Apabetalone binds to bromodomains in BET causing their release from chromatin and downregulation of BET sensitive gene expression.

BET: bromodomain and extraterminal proteins ac: acetylated lysine residue on DNA associated proteins BD: bromodomain

TF: transcription factor

BETonMACE Baseline Characteristics	

Clinical Characteristic	All Patients Randomized		CKD (eGFR <60 mL/min/1.73m ²) Subgroup		Non-CKD (eGFR ≥60 mL/min/1.73m²) Population		CKD Subgroup vs. Non-CKD Population p-value
	N	%	N	%	N	%	(Chi-Squared X ² Test)
Age (yrs) (median) (min, max)	2,425	62 (31, 88)	262	71 (44, 88)	2,163	61 (31, 88)	< 0.0001*
Sex (male)	1,806	74.5%	152	58.0%	1,654	76.5%	< 0.0001
Caucasian	2,115	87.2%	213	81.3%	1,902	87.9%	0.002
MoCA (≥70 yrs)	469	19.3%	147	56.1%	322	14.9%	< 0.0001
MoCA <26	246	52.5%	80	54.4%	166	51.6%	0.56
Index ACS Event:							
ACS / MI	1,787	73.7%	197	75.2%	1,590	73.5%	0.56
Unstable Angina	625	25.8%	63	24.0%	562	26.0%	0.50
History of PCI	1,930	79.6%	191	72.9%	1,739	80.4%	0.004
Medical History							
Diabetes History (median years) (IQR)	6.7 (2.2 – 13.0)		10.2 (3.8 – 18.0)		6.5 (2.1 – 12.4)		< 0.0001 *
BMI (kg/m²) (median) (IQR)	29.6 (26.7 – 33.2)		27.3 (24.5 – 30.1)		30.0 (27.0 – 33.6)		< 0.0001 *
Hypertension	2,144	88.4%	240	91.6%	1,904	88.0%	0.09
Tobacco Use	313	12.9%	17	6.5%	296	13.7%	0.001
Prior Stroke / TIA	184	7.6%	26	9.9%	158	7.3%	0.13
Cardiovascular Disease Medications:							
Atorvastatin	1,245	51.3%	141	53.8%	1,104	51.0%	0.40
Rosuvastatin	1,180	48.7%	121	46.2%	1,059	49.0%	0.40
ACE Inhibitors	1,684	69.4%	162	61.8%	1,522	70.4%	0.005
ARBs	583	24.0%	82	31.3%	501	23.2%	0.004
Beta-Blockers	2,146	88.5%	232	88.5%	1,914	88.5%	0.98
Anti-Platelet Agents	2,392	98.6%	261	99.6%	2,131	98.5%	0.15
DAPT	2,086	86.0%	226	86.3%	1,860	86.0%	0.91
Diabetes Mellitus Medications:							
Insulin	769	31.7%	90	34.4%	679	31.4%	0.33
Diabetes Medications (Ex. Insulins):	2,072	85.4%	208	79.4%	1,864	86.2%	0.003
Metformin	1,866	76.9%	169	64.5%	1,697	78.5%	< 0.0001
Sulfonylureas	608	25.1%	73	27.9%	535	24.7%	0.27
DPP-4 Inhibitors	157	6.5%	30	11.5%	127	5.9%	0.001
SGLT2 Inhibitors	122	5.0%	7	2.7%	115	5.3%	0.06
GLP-1 Agonists	51	2.1%	2	0.8%	49	2.3%	0.11
Clinical Chemistry		Median (IQR)		Median (IQR)		Median (IQR)	
ALP† (U/L)	2,424	78 (64 – 94)	262	80 (64 – 97)	2,162	77 (64 – 94)	0.07
eGFR (mL/min/1.73m²)	2,413	99 (76 – 127)	262	49 (41 – 55)	2,151	104 (84 – 131)	< 0.0001
Albumin (g/dL)	2,413	4.30 (4.10 – 4.50)	262	4.20 (3.90 – 4.40)	2,151	4.30 (4.10 – 4.50)	< 0.0001
LDL-C (mg/dL)	2,395	65 (49 – 85)	262	65.5 (48 – 91)	2,133	65 (49 – 85)	0.62

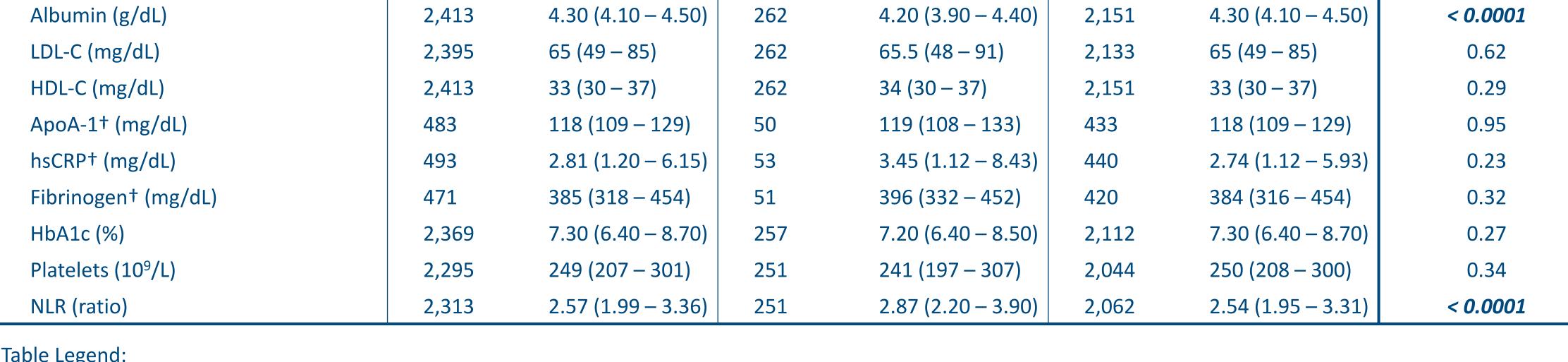
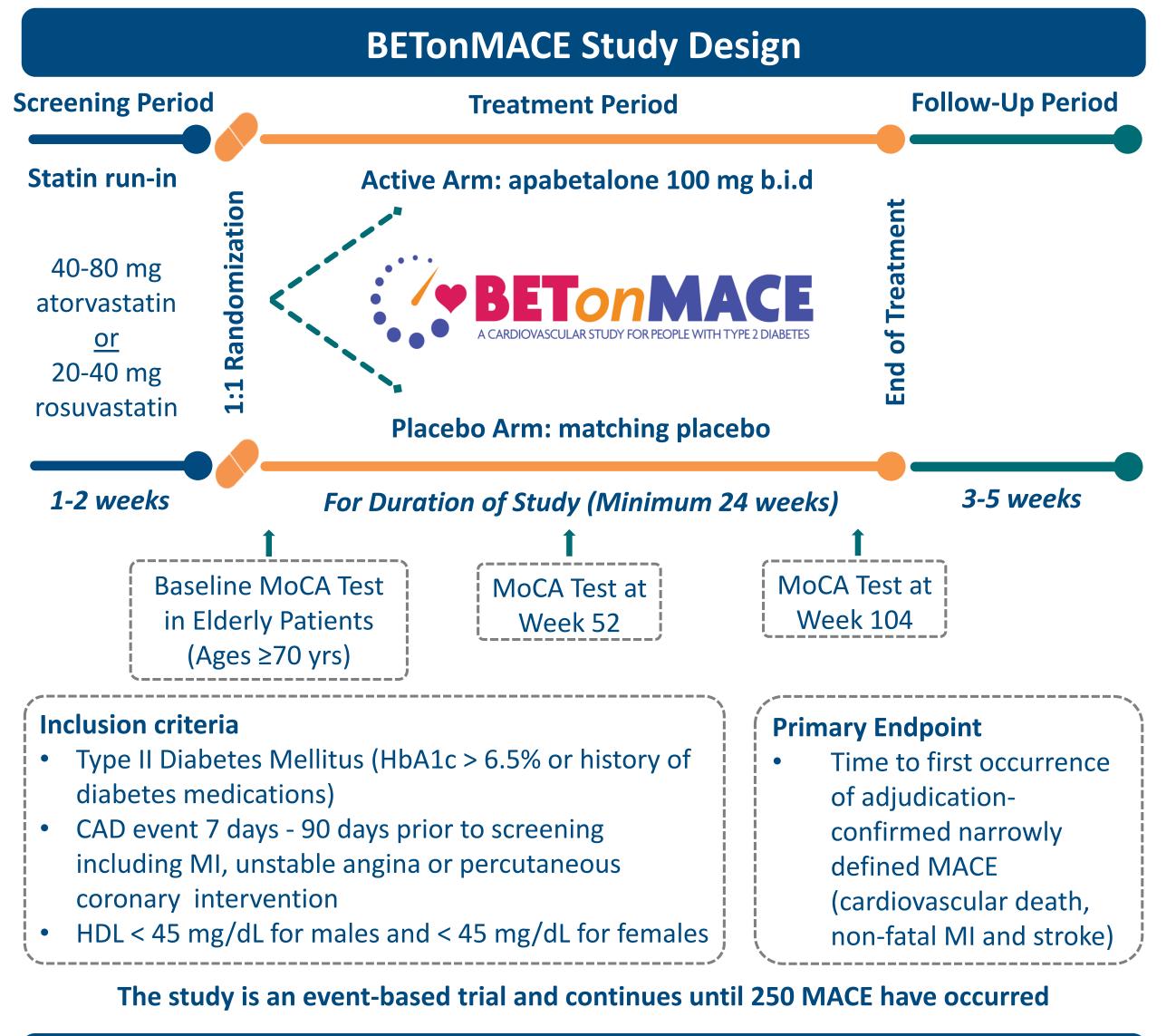
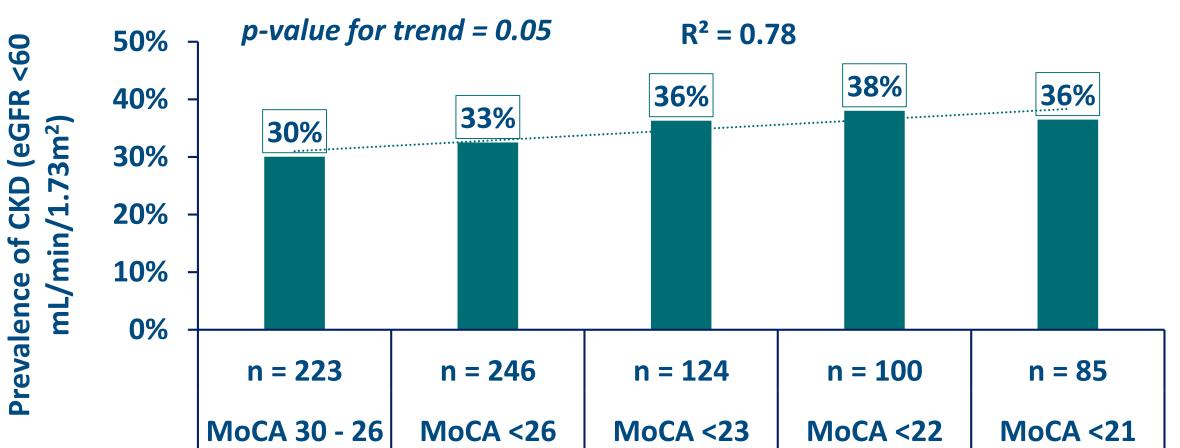




Table Legend: † results from visit 2 / week 0; all other values are from visit 1/screening *IQR: Interquartile Range*

* Mann-Whitney U-Test (Wilcoxon Rank-Sum Test)



Baseline MoCA Subgroups (Score)

Lower MoCA Scores Associates with Higher Prevalence of CKD

Baseline MoCA Subgroups (Score)

P-values calculated using Pearson's Correlation Coefficient

Summary and Conclusions

- Elevated circulating ALP is associated with poorer cognitive function.
- Patients with CKD exhibit higher serum ALP.
 - Apabetalone has been shown to lower serum ALP.
- Apabetalone is being evaluated for its effects on CV events, CKD, and cognitive function in the Phase 3 BETonMACE trial (reporting H2 2019).