

Epigenetic Reader Inhibitor Apabetalone (RVX-208) Counters Proinflammatory Hyperactivation of CD14⁺ Monocytes from Patients with Type 2 Diabetes and Cardiovascular Disease

Sylwia Wasiak^{1#}, Kim E. Dzobo^{2#}, Mahnoush Bahjat², Brooke D. Rakai¹, Yannick Kaiser², Miranda Versloot², Jeffrey Kroon², Stephanie C. Stotz¹, Laura M. Tsujikawa¹, Li Fu¹, Dean Gilham¹, Christopher D. Sarsons¹, Michael Sweeney³, Jan O. Johansson³, Norman C.W. Wong¹, Erik S.G. Stroes², and Ewelina Kulikowski¹

¹Resverlogix Corp, Calgary, AB, Canada, ²Academic Medical Center, Amsterdam, Netherlands, ³Resverlogix Inc, San Francisco, CA, USA, [#]These authors equally contributed to this work.

Background and Rationale

Monocytes from patients with type 2 diabetes (DM2) and cardiovascular disease (CVD) display proinflammatory behavior such as enhanced cytokine production and vascular wall invasion, which promote atherosclerosis. This dysregulation is partly caused by epigenetic reprogramming which can be countered by epigenetic drugs.

Apabetalone Mechanism of Action

Apabetalone binds competitively to bromodomains in histone acetylation "readers" termed BET proteins, causing their release from chromatin and downregulation of BET sensitive gene expression.

BET: bromodomain and extraterminal proteins; ac: acetylated lysine on DNA associated proteins; TF: transcription factor; BD: bromodomain; Yellow star size indicates selectivity of apabetalone for BD2

Study Design

14 Subjects with DM2 and Stable CVD (DM2+CVD) (prior MI, PCI, CABG, unstable angina, TIA, CVA, PAD ≥ 3 months ago on Statin and Insulin Therapy

versus

12 Matched Control Subjects

Blood Collection

CD14⁺ Monocytelsolation

Ex vivo 25 μM Apabetalone or 0.025% DMSO ± 25 U/mL IFN γ

1. Gene Expression Analysis (4h) with Nanostring® Innate Immune Panel (109 genes)

2. Protein Secretion Analysis (24h) with Milliplex® Immuno Profiling (42 cytokines)

3. Bioinformatics with Ingenuity® Pathway Analysis (IPA®) Upstream Regulators Analytic Tool

DM2+CVD Monocytes *versus* Controls: Baseline Analysis **Apabetalone Attenuates Pro-Inflammatory Activation Ex Vivo**

A. Monocytes from DM2+CVD patients have higher expression of pro-inflammatory genes and proteins at baseline. This "activation" is reversed by ex vivo apabetalone treatment.

Gene Name	Function	Fold Difference at Baseline DM2+CVD <i>vs</i> . Control	Gene Expression (4h) in DM2+CVD % Suppression by Apabetalone	Gene Name	Function	DM2+CVD <i>vs</i> . Control: IFNγ: Fold Difference	Controls % Suppression by Anabotalone (4b)	DM2+CVD % Suppression by
IL1B	Pro-inflammatory cytokine IL-1 β	3.2	No change				Apabelaione (411)	Apabelaione (411)
IL1A	Pro-inflammatory cytokine IL-1 α	2.4	-67%		Chemokine MCP-3	2.0	-93%	-90%
FCAR	IaA receptor	1.7	-65%	CCL8	Chemokine MCP-2	1.7	-83%	-85%
CXCL8	Chemokine IL-8	1.5	-61%	TNF	Cytokine TNF α	1.7	No change	-33%
MARCO	Scavenging receptor	0.6	-75%	RELA	NF-κB complex	1.3	-18%	-42%
MS4A4A	M2 macrophage marker	0.6	-76%	MYD88	NF-κB signaling adaptor	1.3	-22%	-40%
SF3A3	Splicing Factor	0.8	-15%	IFITM1	Viral response	0.7	-66%	-72%

B. Apabetalone attentuates cytokine secretion (24h) in monocytes from DM2+CVD patients.

C. Apabetalone downregulates cytokine and TLR gene targets more robustly in monocytes from DM2+CVD patients as compared to controls (4h).

IPA® z-score computes directional changes in gene expression to predict overall pathway activation. z-score < -2 = inhibition.

DM2+CVD Monocytes *versus* Controls: IFN_γ Stimulation Apabetalone Counters Monocyte Hyperactivation Ex Vivo

A. DM2+CVD monocytes have a greater transcriptional response to IFN_γ stimulation (4h) and a greater sensitivity to apabetalone inhibition

Statistics: Two-Way Repeated Measures ANOVA, Bonferroni's test (in-between group comparisons) or Tukey's test (within-group comparisons). Significance defined as p-value < 0.05.

Statistics: Two-Way Repeated Measures ANOVA, Tukey's test for multiple comparisons. ** p<0.01, *** p-value<0.001

- secreted cytokines.
- epigenetic dysregulation of the innate immune response.

RESVERLOGIX

DM2+CVD Monocytes

Summary and Conclusions

 Monocytes from DM2+CVD patients show a hyperactive pro-inflammatory phenotype ex vivo, in non-stimulated and stimulated conditions, despite standard of care therapy. Apabetalone reverses this hyperactivation by downregulating key inflammatory genes and

Monocytes from DM2+CVD patients show greater gene sensitivity to BET inhibitor treatment. Data suggests a greater transcriptional dependency on BET proteins in diseased conditions. • Findings support the development of apabetalone as a therapy for high risk CVD patients with

⁺**Disclosure:** Authors are employed by Resverlogix & hold stock and stock options