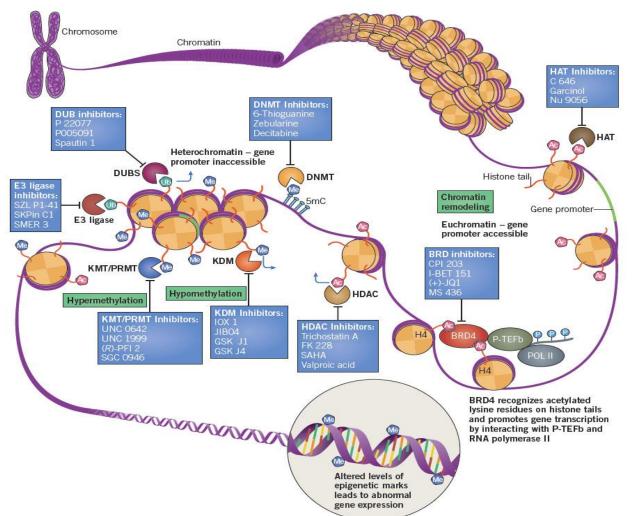
Selective Bromodomain Inhibition with the Bromodomain and Extraterminal Domain (BET) Inhibitor Apabetalone: Discovery to Phase 3 Cardiovascular Outcomes Study

Norman C. W. Wong, MD, FRCPC Co-Founder and CSO, Resverlogix Corp.

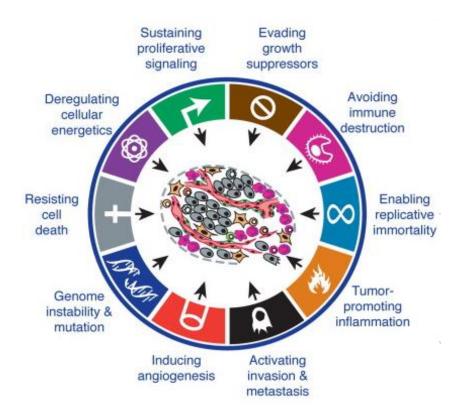
Outline

- 1.) Role of epigenetics in disease (cancer and CVD/inflammation)
- 2.) Activity of Bromodomain and ExtraTerminal Proteins (BET) in epigenetics
- 3.) Apabetalone (RVX-208), a selective BET inhibitor


Unique BD selectivity and mechanism of action Preclinical studies; cells and animals Biomarkers and pathways Clinical data (Phase 1-3 trials) Safety of Apabetalone

- 4.) Future development of Apabetalone
- 5.) Summary

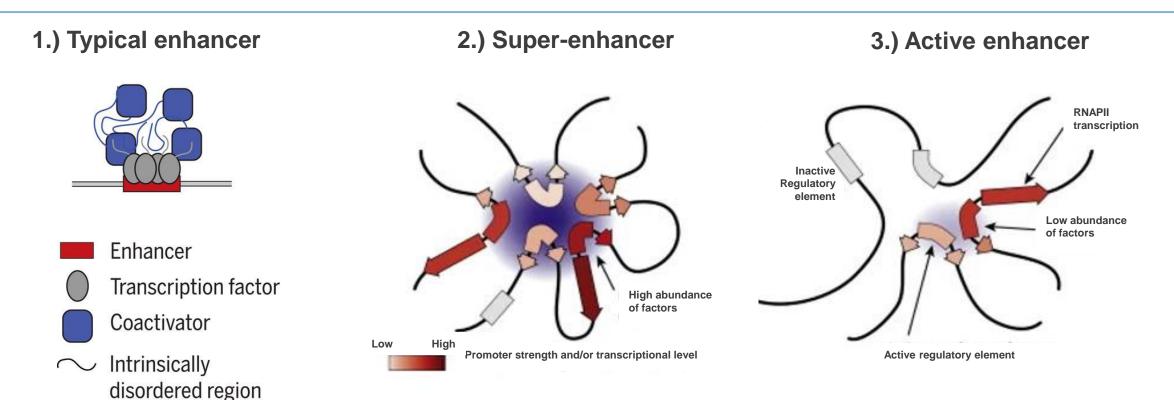
Role of Epigenetics in Cancer



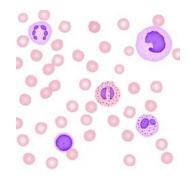
Epigenetics: processes that regulate gene activity which do NOT affect genomic sequence

Epigenetic Mechanisms in Cancer: initiation, progression, & metastasis.

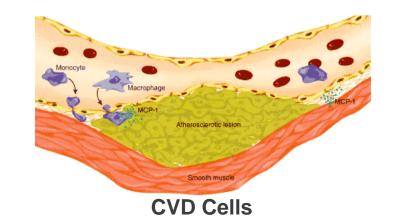
- aberrant DNA methylation
- long non-coding RNAs (IncRNAs)
- histone modifications



3


Typical-, Super-, and Active-Enhancers in Regulating Gene Activity

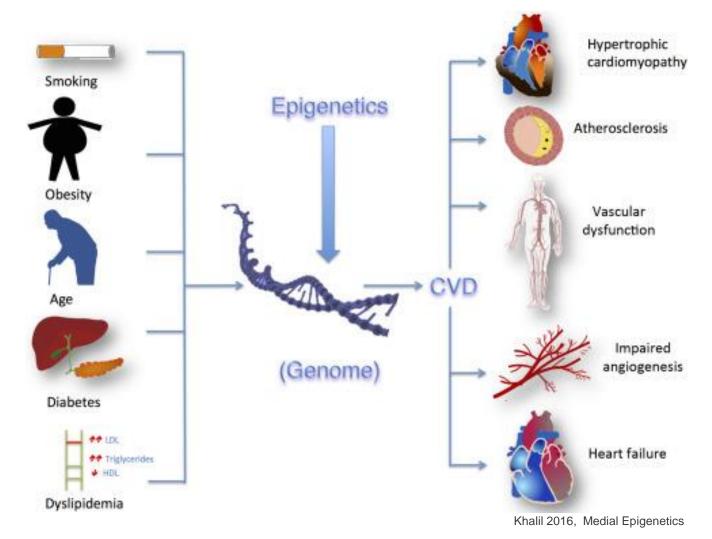
4


Benjamin R. Sabari et al. Science 2018;361:eaar3958

Normal Cells

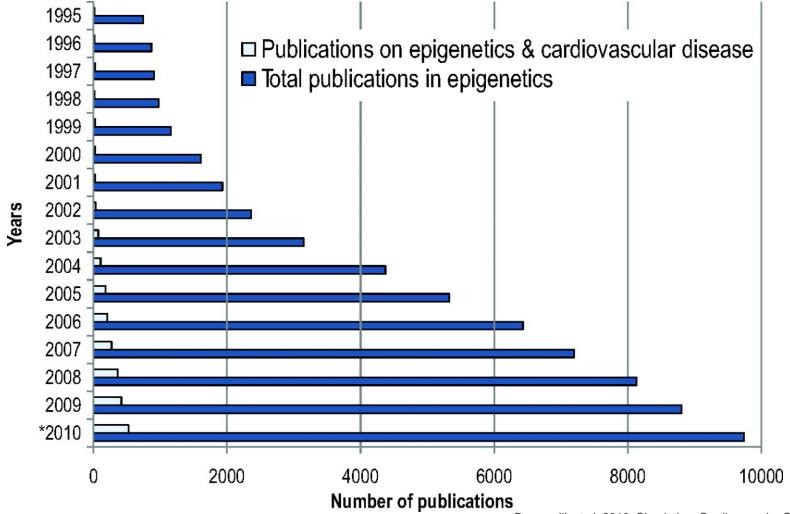
Cancer Cell

Commonality amongst diseases is gene activity changes in response to the pathologic process(es).



Role of Epigenetics in Cardiovascular Disease (CVD)

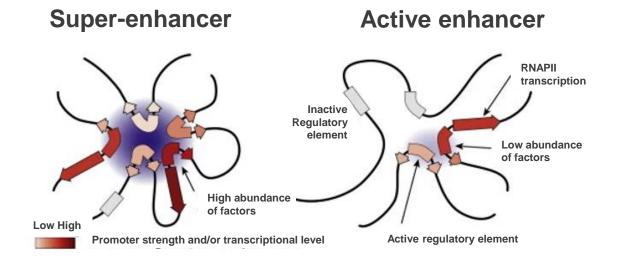
RESVERLOGIX

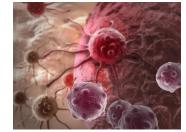

- CVD is multifactorial
- CVD risk factors are associated with epigenetic modifications to the "histone code"

Role of Epigenetics in Cardiovascular Disease (CVD)

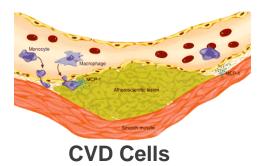
RESVERLOGIX

• Increasing evidence for epigenetics in cardiovascular disease (CVD)




Baccarelli et al. 2010, Circulation: Cardiovascular Genetics

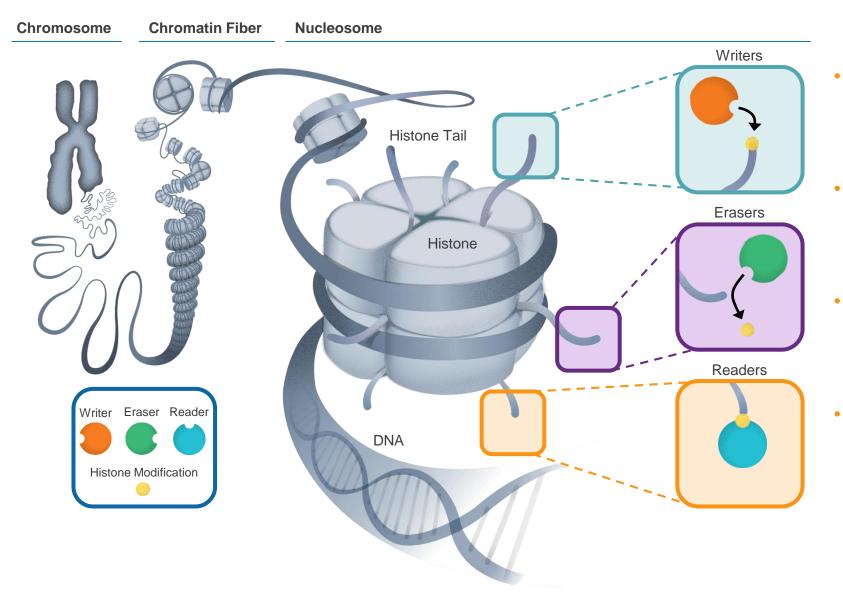
Summary



1.) Human diseases share a common basic mechanism

Cancer Cell

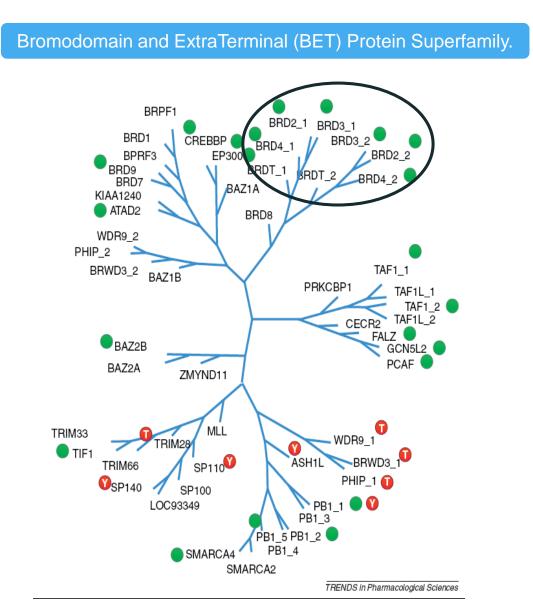
Outline


- 1.) Role of epigenetics in disease (cancer and CVD/inflammation)
- 2.) Activity of Bromodomain and ExtraTerminal Proteins (BET) in epigenetics
- 3.) Apabetalone (RVX-208), a selective BET inhibitor

Unique BD selectivity and mechanism of action Preclinical studies; cells and animals Biomarkers and pathways Clinical data (Phase 1-3 trials) Safety of Apabetalone Future development of Apabetalone

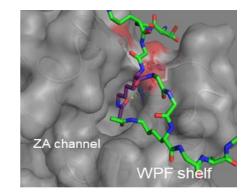
4.) Future develop5.) Summary

Epigenetics Regulate Gene Activity

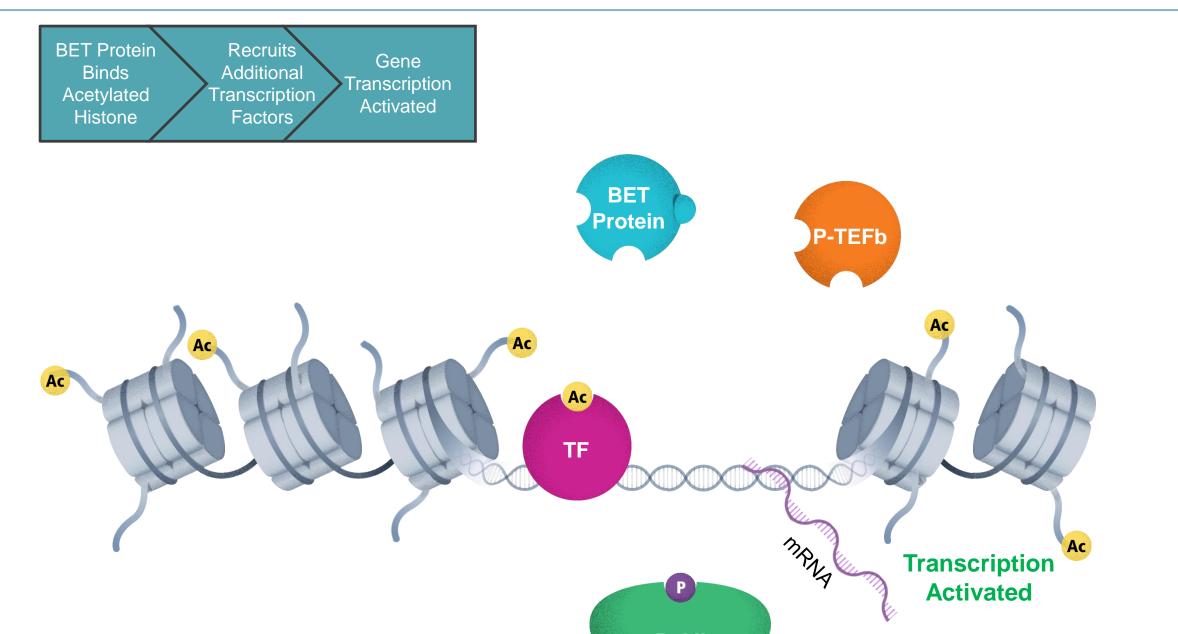


- Epigenetics refers to **modifications** to chromatin that regulate it's activity
- Transcription is regulated by
 addition, removal, or
 recognition of these modification
- Acetylation is associated with active transcription regions of chromatin
- Bromodomain and
 Extraterminal Domain (BET)
 proteins bind to acetylated
 histones and recruit additional
 transcription factors to drive gene
 expression

BET Proteins Bind to Acetylated Lysines via Dual Bromodomains

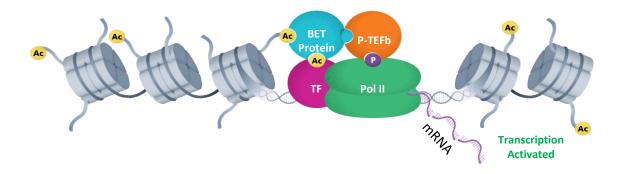


Each BET protein has a pair of bromodomains (BD)


Acetylated Lysine bound to a BD

X-ray crystallography Acetylated lysine (color) bound to bromodomain (grey)

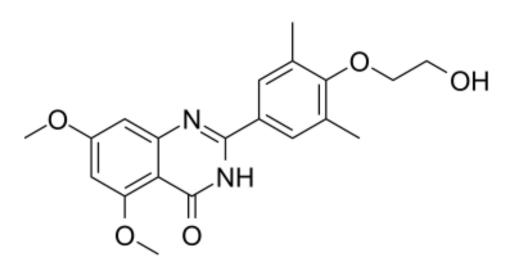
BET Proteins Binding to Acetylated Lysines Regulate Gene Expression



Summary

 Human diseases share a common basic mechanism
 BET proteins are important components of the transcriptional machinery in gene regulation.

Outline

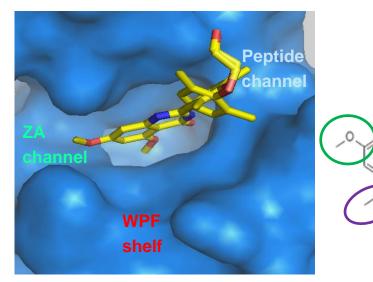


- 1.) Role of epigenetics in disease (cancer and CVD/inflammation)
- 2.) Activity of Bromodomain and ExtraTerminal Proteins (BET) in epigenetics
- 3.) Apabetalone (RVX-208), a selective BET inhibitor

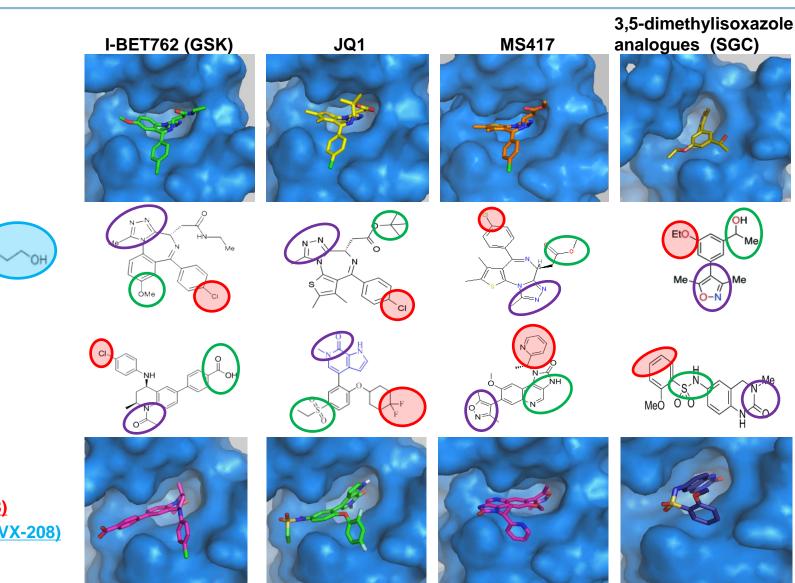
Unique BD selectivity and mechanism of action Preclinical studies; cells and animals Biomarkers and pathways Clinical data (Phase 1-3 trials) Safety of Apabetalone

4.) Future development of Apabetalone

5.) Summary


Apabetalone (RVX-208)

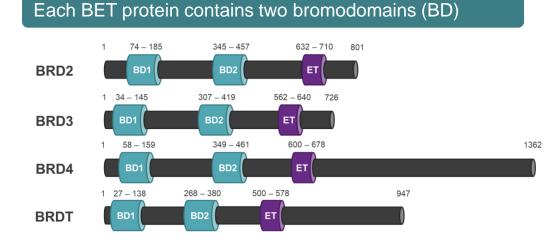
Discovery and Characterization of Apabetalone


- Apabetalone/RVX-208/RVX000222 (2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7dimethoxyquinazolin-4(3H)-one)
- Discovered and synthesized in 2006 at Resverlogix as part of the medicinal chemistry program aimed at discovering compounds to upregulate Apolipoprotein A-I, the building block of HDL
- Selected using a cell based screen for Apolipoprotein A-I induction in liver cells, *in vitro*
- Tested in numerous cell and animal models of cholesterol metabolism at Resverlogix including a variety of cell and tissue types (i.e. liver/intestine) and models of cardiovascular disease and obesity
- Apabetalone was identified as a BET inhibitor in 2013 (McLure; Picaud) using binding assays, x-ray crystallography, chromatin displacement. Apolipoprotein A-I expression is regulated by BET proteins.

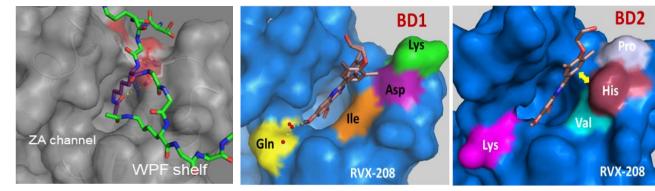
Binding of Apabetalone to the BD is unique vs other BET inhibitors. RESVERLOGIX

Apabetalone (RVX-208)

I-BET726 (GSK)


Abbvie

I-BET151 (GSK)


PFI-1(Pfizer)

Apabetalone Inhibits BET Protein Binding to Acetylated Lysines

Apabetalone has selectivity for bromodomain 2 (BD2) within BET proteins

X-ray crystallography Acetylated lysine (color) bound to bromodomain (grey)

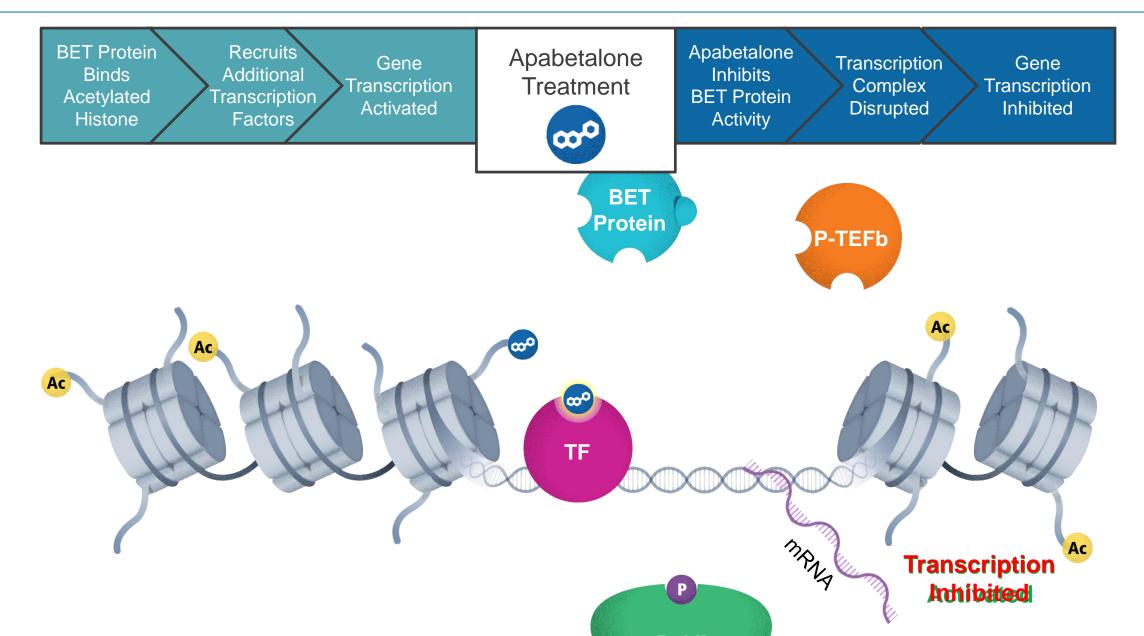
X-ray crystallography Apabetalone bound to bromodomain

Apabetalone has selectivity for bromodomain 2 (BD2) within BET proteins

 Using biochemical assays including; alphascreen (competition assay), Bromoscan (direct binding assay), and isothermal calorimetry (direct binding), apabetalone has shown BD2 selectivity with approximately 27-fold and binding to BD2 in the 100-200 nanomolar range

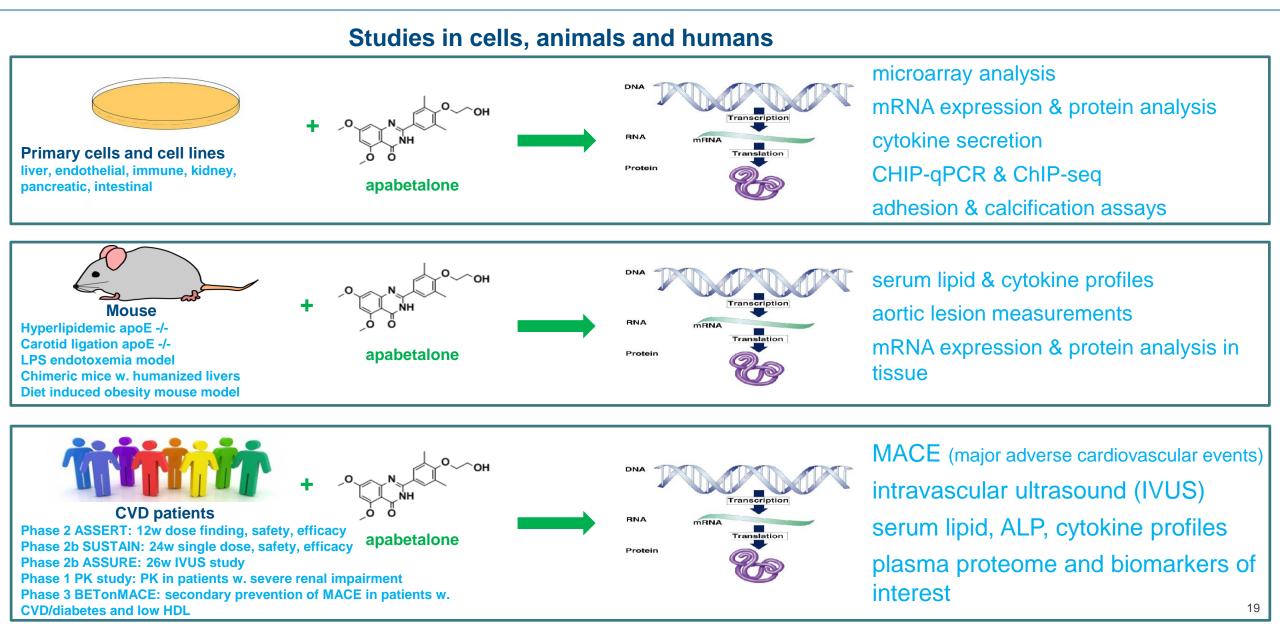
AlphaScreen Selectivity Panel (IC50, uM)

	BRD2(1)	BRD2(2)	BD1/BD2	BRD3(1)	BRD3(2)	BD1/BD2	BRD4(1)	BRD4(2)	BD1/BD2
RVX-208	6.17	0.22	27	4.88	0.17	29	3.22	0.12	27
JQ1	0.08	0.05	1.6	0.04	0.03	1.3	0.06	0.04	1.7


 Using live in cell assays such as NANOBRET, apabetalone has been shown to displace full length Brd4 or Brd4-BD2 at an IC50 of 1um Table 3. Binding of RVX-208 to individual bromodomains.

Bromodomain	Thermal der ∆T _m (°C)	naturation	TR-FRET IC50 (μM)		
	RVX-208	JQ-1	RVX-208	JQ-1	
BRD2[BD1]	1.9	6.7	2.6	0.09	
BRD2[BD2]	5.1	7.7	0.09	0.01	
BRD3[BD1]	2.6	9.6	3.1	0.04	
BRD3[BD2]	6.8	9.0	0.28	0.03	
BRD4[BD1]	3.9	10.3	1.8	0.12	
BRD4[BD2]	7.7	5.5	0.04	0.01	

McLure et al. 2013, PLOSOne


Apabetalone BET Inhibition Reduces Gene Expression

Mechanism of Action and Effect of Apabetalone

BET Proteins Affect Expression of Mediators of CVD;

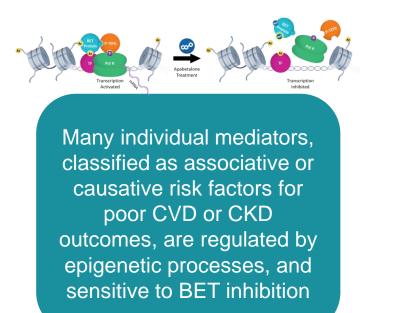
evidence from cell/animal and human studies

Many individual mediators, classified as associative or causative risk factors for poor CVD or CKD outcomes, are regulated by epigenetic processes, and sensitive to BET inhibition

Fibrosis						
Genes	BET	Cell type	Disease model	Reference		
IL6, ACTA2, PAI1, COL1A1, FN1	BRD2 BRD4	Human primary lung fibroblasts	Bleomycin-induced pulmonary fibrosis	Tang 2013 AJP		
COL1A1, ACTA2, COL1A2, DES, PDGFRB, CCND1, FBN1, FN1, TIMP1, TGFB1	BRD4	Human activate hepatic stellate cells (LX-2 cell line) Primary mouse HSCs	Carbon tetrachloride mouse model of liver injury	Ding 2015 PNAS		
TS2, HNF4A, JUNB, FOXP1, CDH2	BRD4	Human lung cancer A549 cell line		Chang 2016 NAR		
ACTA2, COL1A1, P53, FBN1, SMAD7, CCL2, c-MYC	BRD4	Renal interstitial fibroblast cells (NRK-49F)	Unilateral ureteral obstruction	Xiong 2016 Oncotarget		
MCP1, OPN	BRD2 BRD3 BRD4	U937 macrophages	Inflammation (LPS stimulation)	Gilham 2017 AHA Kulikowski 2017 ERA- EDTA		
F9, F7, F11, PROC, KLKB1, TFPI, F12, F13B, F2, A2M, PROS1, F5	BRD2 BRD3 BRD4	Human primary hepatocytes and whole blood	Atherosclerosis	Gilham 2016 Atherosclerosis		
Thrombin, F9, F10, F11, F12, KLKB1	BRD2 BRD3 BRD4	Human primary hepatocytes, Huh-7 cells, chimeric mice w. humanized livers,		Wasiak 2017 JCTR		
F2, F10	BRD2 BRD3 BRD4	Serum	CVD patients (ASSURE & ASSERT phase 2 clinical trials)	Wasiak 2017 JCTR		
FN1, MMP3, MMP10	BRD2 BRD3 BRD4	Serum	Stage 4/5 CKD patients	Wasiak 2018 KIR		

Genes	BET	Cell type	Disease model	Reference
MBL2, C9, C6, C8A, C4A-B, C4BPB, C5, C1S, C8G, C2, CFH, C3	BRD2 BRD3 BRD4	Human primary hepatocytes and whole blood	Atherosclerosis	Gilham 2016 Atherosclerosis Wasiak 2016 DIP
MBL2, C1S, C2, C3, C4, C9, C6, C8A, SAP, CRP, C5a, C3b, C5b- C6, COLEC11	BRD2 BRD3 BRD4	Human primary hepatocytes, Huh-7 cells, chimeric mice w. humanized livers	Basal, IL6 and IFN stimulation	Wasiak 2017 JCTR
CRP, C3, VTN, C4A C4B, F10, C7, C6, CFI, F2, C9	BRD2 BRD3 BRD4	Serum	CVD patients (ASSERT phase 2 clinical trial)	Wasiak 2017 JCTR
CRP, C5, C6, COLEC11, C8, SerpinG1, C2, APCS, COLEC12, F10, CD55, CFB, FCN1, C1R	BRD2 BRD3 BRD4	Serum	CVD patients (ASSURE phase 2 clinical trials)	Wasiak 2017 JCTR Tsujikawa 2019 Clinical Epigenetics
C3b, C3d, C5	BRD2 BRD3 BRD4	Serum	Stage 4/5 CKD patients	Wasiak 2018 KIR
	Α	cute Phase F	Response	
Genes	A BET	cute Phase F	Response Disease model	Reference
Genes MBL2, C9, CP, IRAK1, LBP, C5, AHSG, KLKB1, APCS, ITIH2, C1S OSMR, F2, SHC, SERPINE1, C2, IL1RN				Reference Gilham 2016 Atherosclerosis Wasiak 2016 DIP Wasiak 2019 PLOS ["]
MBL2, C9, CP, IRAK1, LBP, C5, AHSG, KLKB1, APCS, ITIH2, C1S OSMR, F2, SHC, SERPINE1, C2,	BET BRD2 BRD3	Cell type Human primary hepatocytes	Disease model	Gilham 2016 Atherosclerosis Wasiak 2016 DIP Wasiak 2019 PLOS ^{**} Gilham 2016 Atherosclerosis Wasiak 2017 JCTR
MBL2, C9, CP, IRAK1, LBP, C5, AHSG, KLKB1, APCS, ITIH2, C1S OSMR, F2, SHC, SERPINE1, C2, IL1RN	BET BRD2 BRD3 BRD4 BRD2 BRD2 BRD3	Cell type Human primary hepatocytes Whole blood	Disease model Atherosclerosis CVD patients (ASSURE phase	Gilham 2016 Atherosclerosis Wasiak 2016 DIP Wasiak 2019 PLOS ^{**} Gilham 2016 Atherosclerosis Wasiak 2017 JCTR Tsujikawa 2019 Clinical
MBL2, C9, CP, IRAK1, LBP, C5, AHSG, KLKB1, APCS, ITIH2, C1S OSMR, F2, SHC, SERPINE1, C2, IL1RN APCS, C3, CP, C5, CRP	BET BRD2 BRD3 BRD4 BRD2 BRD3 BRD4 BRD4 BRD2 BRD3	Cell type Human primary hepatocytes Whole blood Serum	Disease model Atherosclerosis CVD patients (ASSURE phase 2 clinical trials) LPS mouse model of systemic	Gilham 2016 Atherosclerosis Wasiak 2016 DIP Wasiak 2019 PLOS" Gilham 2016 Atherosclerosis Wasiak 2017 JCTR Tsujikawa 2019 Clinical Epigenetics
MBL2, C9, CP, IRAK1, LBP, C5, AHSG, KLKB1, APCS, ITIH2, C1S OSMR, F2, SHC, SERPINE1, C2, ILTRN APCS, C3, CP, C5, CRP APCS LLTRN, FGG, CRP, ITIH4, FGA FGB	BET BRD2 BRD3 BRD4 BRD2 BRD3 BRD4 BRD2 BRD3 BRD4 BRD2 BRD3	Cell type Human primary hepatocytes Whole blood Serum Mouse liver	Disease model Atherosclerosis CVD patients (ASSURE phase 2 clinical trials) LPS mouse model of systemic inflammation CVD patients (ASSERT phase	Gilham 2016 Atherosclerosis Wasiak 2016 DIP Wasiak 2019 PLOS ^{**} Gilham 2016 Atherosclerosis Wasiak 2017 JCTR Tsujikawa 2019 Clinical Epigenetics Wasiak 2019 PLOS ^{**}

	Vascular Calcification						
Genes	BET	Cell type	Disease model	Reference			
ALPL, OPG, RANKL, MCP1, IL8, BMP2, OPN	BRD2 BRD3 BRD4	Primary human hepatocytes	Basal conditions	Gilham 2019 Atherosclerosis Gilham 2017 AHA Kulikowski 2017 ERA- EDTA			
ALPL, RUNX2, WNT5A, MGP, LEP, POSTN, NFATC1, ACVR2A, ROR2	BRD2 BRD3 BRD4	Human vascular smooth muscle cells	Osteogenic and calcifying conditions	Gilham 2019 Atherosclerosis			
MCP1, OPN	BRD2 BRD3 BRD4	U937 macrophages	Inflammation (LPS stimulation)	Gilham 2017 AHA Kulikowski 2017 ERA- EDTA			
ALP, OPG, OPN	BRD2 BRD3 BRD4	Serum	CVD patients (ASSERT/ASSURE/SUSTAIN phase 2 clinical trials)	Haarhaus 2019 Atherosclerosis Gilham 2017 AHA Kulikowski 2017 ERA- EDTA			
ALP	BRD2 BRD3 BRD4	Serum	CVD patients w. eGFR < 60 mL/ min/ 1.73 m ² (ASSURE/SUSTAIN phase 2 clinical trials)	Kulikowski 2018 KBPR			
OPN	BRD2 BRD3 BRD4	Serum	Stage 4/5 CKD patients	Wasiak 2018 KIR			
NFATc1, RUNX2	BRD2 BRD3 BRD4	Osteoclasts, osteoblasts	Post-ovariectomy osteoporosis	Baud'huin 2017 Bone			


Inflammation						
Genes	BET	Cell type	Disease model	Reference		
VCAM1, SELE, CCL2, CSF2, LTB, TNFAIP3, IRAK2, CSF2RB, CXCR7, CXCL1, ICOSLG	BRD4	Human umbilical vein endothelial cells	Atherosclerosis (hypercholesterolemic mice)	Brown 2014 Mol Cell		
VCAM1, SELE, CCL2, IL8	BRD4	Human umbilical vein endothelial cells	TNFα stimulation	Tsujikawa 2019 Clinica Epigenetics		
TNFA, IL1B, IL6, CCL2 (MCP-1), IL10	BRD2 BRD3 BRD4	Murine bone marrow-derived macrophages	Endotoxemic (LPS-induced "cytokine storm")	Belkina 2013 J Immunol		
CCL2, CCL5 (RANTES), IL6, CSF2, CCL20, LTB, ICOSLG, IL8	BRD4	Human tubular epithelial cells (HK2 cell line)	Unilateral ureteral obstruction Systemic infusion of ANGII Nephrotoxic serum nephritis	Suarez-Alvarez 2017 JASN		
IL6, TIMP1, NOX4, COL8A1, CCL21A, CTGF	BRD4	Neonatal rat ventricular cardiomyocytes (NRVM)	Transverse aortic constriction (TAC) (cardiac hypertrophy)	Anand 2013 Cell		
IL6	BRD2 BRD3 BRD4	U937 macrophage		McLure 2013 PlosONE		
Haptoglobin, VCAM1, IL18, SAP, MIP1α, MCP1, IL6	BRD2 BRD3 BRD4	Mouse serum, HAEC, U937 cells	Hyperlipidemic apoE ^{-/} mice Carotid artery ligation	Jahagirdar 2014 Atherosclerosis		
FN1, CCL2, CCL8, CCL7, CCL18, SPP1, CCL23, PIK3R3, FCGR1A, ITGA9, IL2RA, F13A1, PROK2, CXCL1	BRD2 BRD3 BRD4	Human primary hepatocytes and whole blood	Atherosclerosis	Gilham 2016 Atherosclerosis Wasiak 2016 DIP		
ANGPT2, APCS, APP, C5, CCL1, CCL5, CD38, CCL18, CRP, IL18, ICAM1, IL12B, TLR4, VCAM1, IL5, TNFRSF11B, CX3CL1, CXCL2, CXCL3, CXCL13, MMP3	BRD2 BRD3 BRD4	Serum	CVD patients (ASSURE phase 2 clinical trials)	Gilham 2016 Atherosclerosis Tsujikawa 2019 Clinica Epigenetics		
IL6, IL17A, IL15RA, IL12, IL1A	BRD2 BRD3 BRD4	Serum	Stage 4/5 CKD patients	Wasiak 2018 KIR		
COX2, CSF-2, IL1B, IL6, OPG, MYD88, CD44, CXCL10, CXCL3, IL15, IL18, LTB, TGFB3, TNF, IRF1, RELB, TLR2, IL1R, TRADD, C1S, CFB, IFIT2, TNFAIP3, CCR1, CCR2, TLR4, VLA4	BRD2 BRD3 BRD4	Human umbilical vein endothelial cells, THP1 monocytes	TNF α , IL1B, LPS stimulation	Tsujikawa 2019 Clinica Epigenetics		
IL8, MCP1, CCL5, IL6	BRD2 BRD3 BRD4	Pulmonary microvascular endothelial cells	TNFα stimulation	Van der Feen 2019 AJRCCM		
GM-CSF, CX3CL1, MCP3, IP10, IL6, VCAM1, SELE,	BRD2 BRD3 BRD4	Whole lung lysates Primary human brain microvascular endothelial cells, brain endothelial hCMEC/D3 cell	TNFα, IL1B, LPS stimulation	Wasiak 2019 CTAD		
SELE, ICAM, CCR2, CD68	BRD2 BRD3 BRD4	Mouse brain	LPS mouse model of systemic inflammation	Wasiak 2019 CTAD		
IL2, IFN, TNF, Tbet	BRD2 BRD3 BRD4	Activated T cells	T2DM CVD patients	Wong 2019 EASD		
IL1, IL8, TNF, MYD88, RELA, TLR4, CCL2, CCL7, CCL8, CXCL9, CXCL10, CCR1, TLR1, TLR8, LY96, FPR2, TICAM2, MSR1	BRD2 BRD3 BRD4	Human monocytes baseline & IFN stimulated	T2DM CVD patients	Wasiak 2020 ACC**		

BET Proteins Affect Expression of Mediators of CVD;

Inflammation

evidence from cell/animal and human studies

Fibrosis

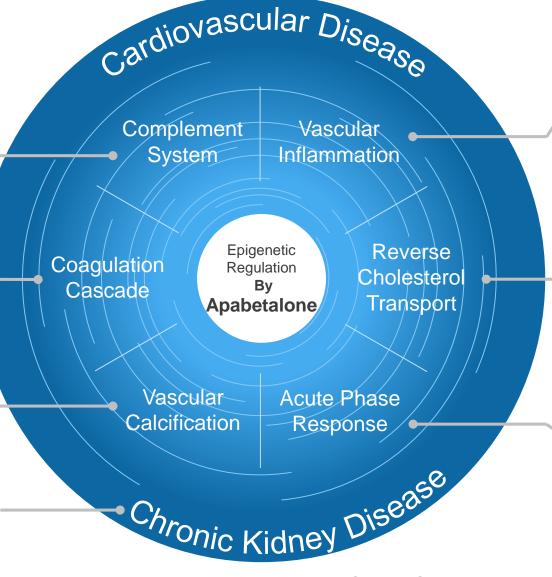
Complement Cascade Acute Phase Response

Vascular Calcification

Fibrosis

Vascular Calcification

Apabetalone Affects Pathways Leading to Vascular Disease


Apabetalone reduces the expression of multiple components of the complement cascade

> Gilham et al. 2016 Wasiak et al. 2016 Wasiak et al. 2017

Apabetalone reduces the expression of several factors within the coagulation system *Gilham et al. 2016 Wasiak et al. 2017*

Levels of ALP, osteopontin and other drivers of vascular calcification and fibrosis are lowered by apabetalone *Gilham et al. 2019*

Apabetalone reduces markers of systemic inflammation, endothelial dysfunction, vascular calcification, fibrosis, and atherosclerosis in patients with CKD Wasiak et al. 2018

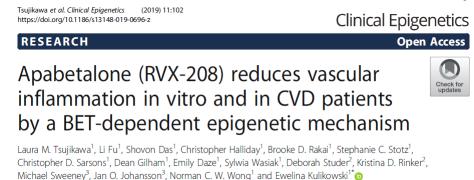
Reduced Incidence of MACE & CHF

Treatment with apabetalone reduces mediators that drive endothelial activation, monocyte recruitment and plaque destabilization *Tsujikawa et al. 2019 Wasiak et al. 2020 (submitted)*

Apabetalone contributes to remodeling of the HDL proteome and lipidome, including increased ApoA-1 and HDL particle size Jahagirdar et al. 2014 Gilham et al. 2016 Nicholls et al. 2017

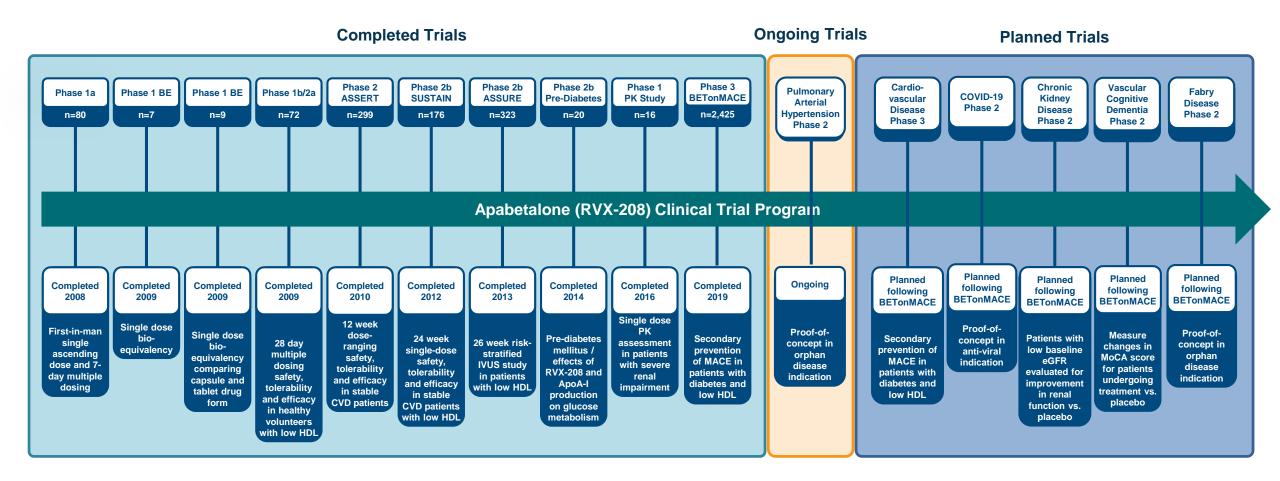
Apabetalone reduces markers of systemic inflammation including acute phase reactants

Wasiak et al. 2020 (submitted)



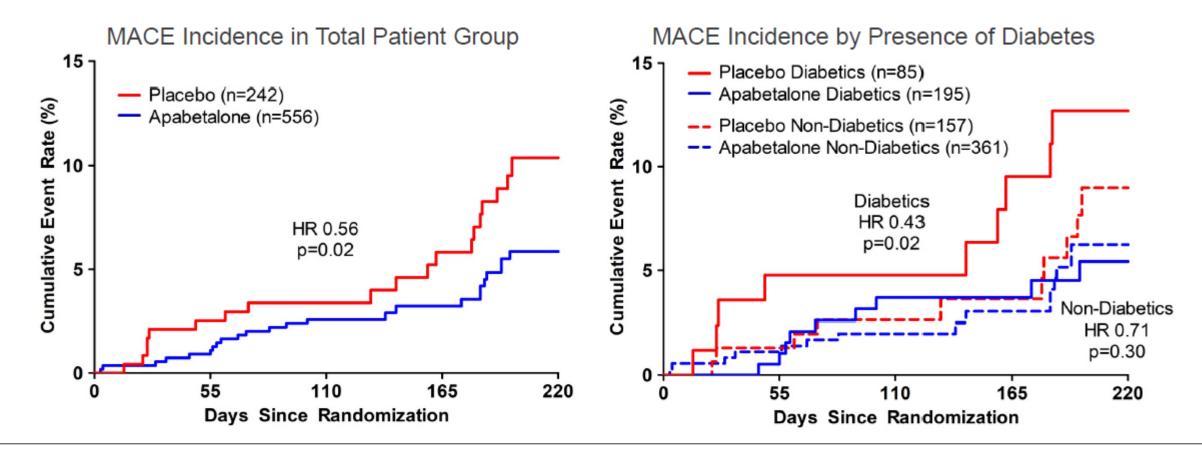
Reverse Cholesterol Transport

- **Complement and Coagulation**
- Acute Phase Response
- Vascular Calcification and Fibrosis

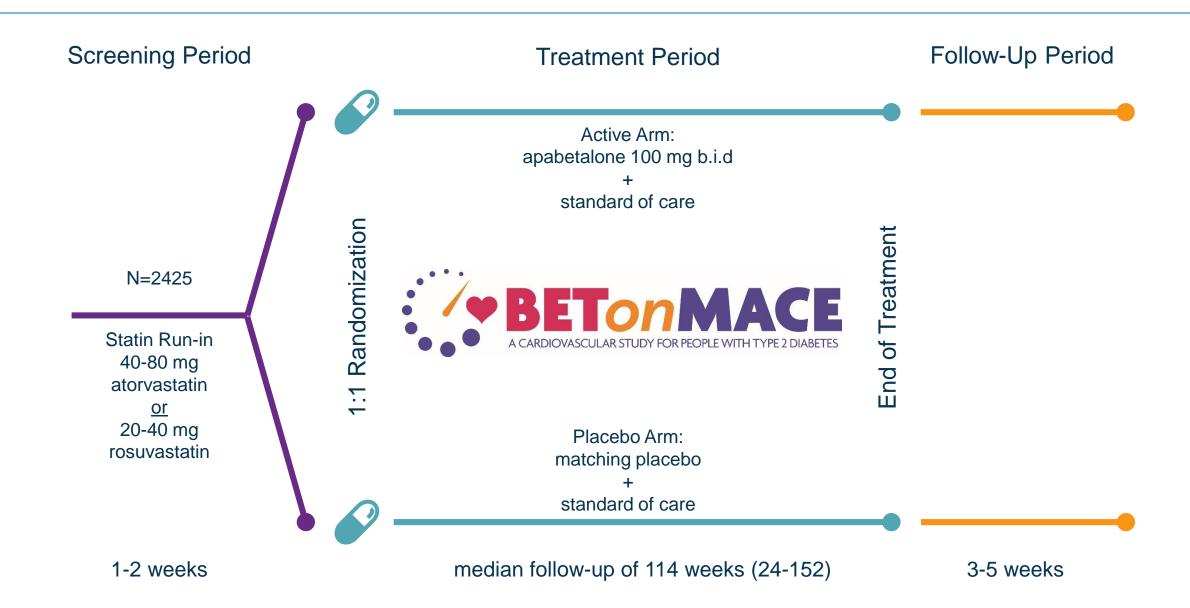

Vascular Inflammation

Apabetalone prevents inflammatory (TNFα, LPS, or IL-1β) induction of genes that drive endothelial activation, monocyte recruitment, adhesion, and plaque destabilization. Apabetalone reduces BRD4 abundance on the promoters and enhancers of inflammation and adhesion genes. Pre-treatment of endothelial cells with apabetalone reduces monocyte adhesion to the endothelial monolayer. CVD patients treated with apabetalone have lower VI mediators in their plasma versus placebo.

Clinical Program: Apabetalone for treating CVD



Trial		Dees	Demotion	Deficult culture	Patient number		MACE Endpoints	
Name	Study Number	Dose	Duration	Patient criteria	Apabetalone	Placebo	Apabetalone	Placebo
ASSERT	RVX222-CS-005	Multiple doses: 100mg, 200mg, 300mg daily	12 week	Stable coronary artery disease on standard of care therapy	76 on 100 mg 75 on 200 mg 74 on 300 mg	74	2.2%	2.7%
SUSTAIN	RVX222-CS-008	200 mg daily	24 week	Statin-treated patients with stable coronary artery disease and/or dyslipidemia, with low baseline HDL-C concentrations	88	88	0.4%	7.5%
ASSURE	RVX222-CS007	200 mg daily	26 week	Statin-treated patients with stable coronary artery disease and/or dyslipidemia, with low baseline HDL-C concentrations	243	80	7.5%	14.3%
					556	242	5.9%	10.4%
			Subgroup: + T2DM			5.4%	12.7%	
	Combined Pooled Analysis			Subgroup: + low HDL-C			5.5%	12.8%
				Subgroup: + high hsCRP			5.4%	14.2%



- MACE (major adverse cardiovascular events) including death, myocardial infarction, coronary revascularization, and hospitalization for cardiovascular causes.
- Other characteristics associated with greater effect of apabetalone in pooled Phase 2 were low HDL-C and high hsCRP
- Data shown are aggregate from the following trials: ASSERT;ASSURE;SUSTAIN. Nicholls Am J Cardiovasc Drugs 2018

Design of Phase 3 Clinical Trial: BETonMACE

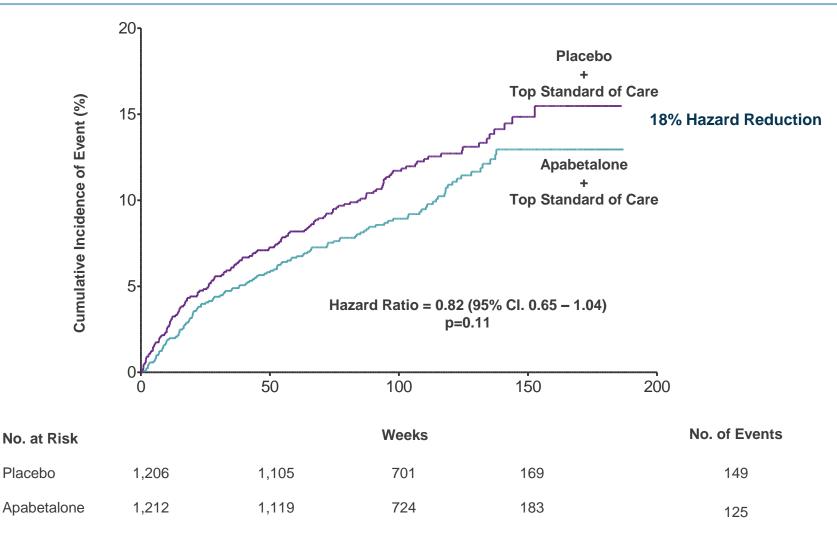
RESVERLOGIX

Primary Objective

• To evaluate if treatment with apabetalone as compared to placebo increases time to the first occurrence of Primary MACE.

Key Inclusion Criteria

- Type 2 Diabetes Mellitus
 - HbA1c >6.5% or history of diabetes medications
- Acute coronary syndrome 7-90 days prior to the screening visit
 - Unstable angina (Limited to 25% of total participants) or acute myocardial infarction
- Low HDL cholesterol
 - <40 mg/dL (1.04 mmol/L) for males; <45 mg/dL (1.17 mmol/L) for females at the screening visit


Primary Endpoint

• Time to first occurrence of adjudication-confirmed primary MACE (CV death, non-fatal MI and stroke)

Key Secondary and Exploratory Endpoints

- Change in kidney function in chronic kidney disease sub-population
 - Baseline estimated glomerular filtration rate (eGFR)
 <60 mL/min/1.7m²
- Change in Montreal Cognitive Assessment (MoCA)
 - Evaluated in at-risk sub-population (>70 years old at randomization)

Phase 3 Clinical Trial: BETonMACE - Primary Endpoint of Narrow MACE

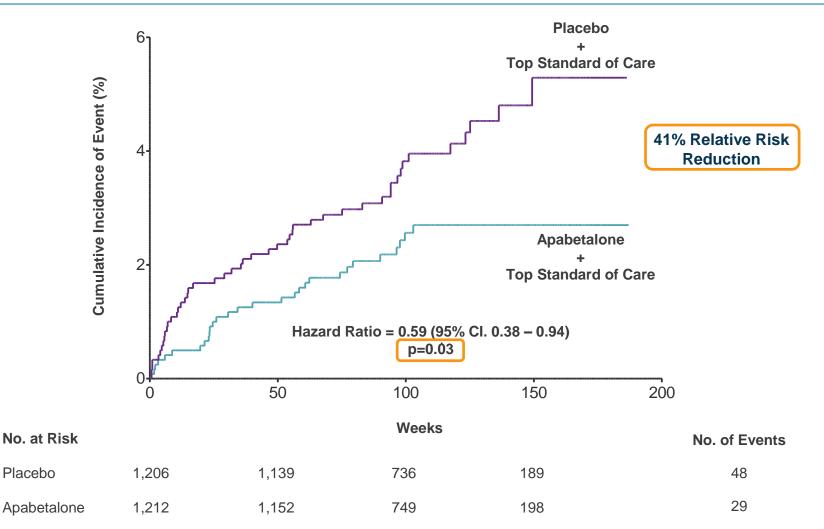
The effect of the co-administration of apabetalone and top standard of care – quantified by MACE defined as CV death, non-fatal MI and stroke –

illustrated a reduction of events compared to placebo and top standard of care

- HR = 0.82 (95% CI, 0.65–1.04; p=0.11)
- Apabetalone was well tolerated with similar rates of adverse events compared to placebo in over 4,200 patient years

Top standard of care includes: high intensity statins, ACE inhibitors/angiotensin II blockers, beta blockers, antiplatelet agents

Apabetalone treatment led to a favorable 18% hazard reduction of MACE compared to placebo

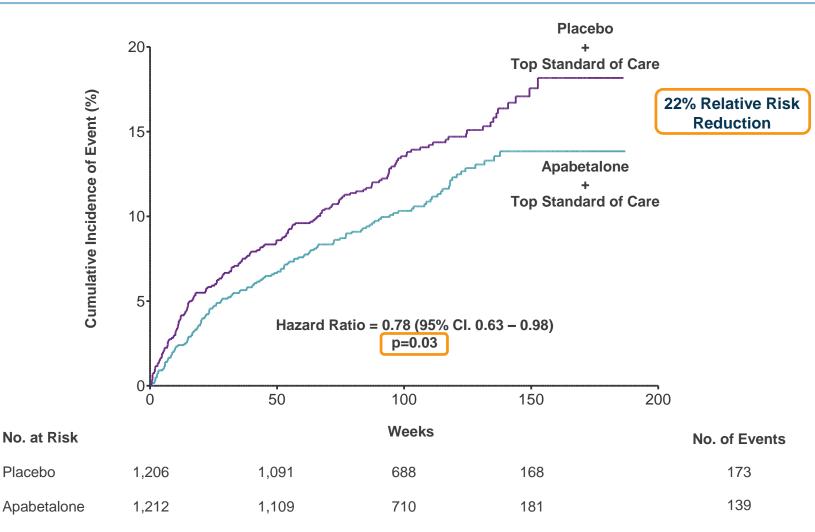

Phase 3 Clinical Trial: Top Line Data Cardiovascular End-Points

	Primary End Point	Apabetalone no. of events(Placebo % of patients)	Hazard Ratio	o (95% CI)
	First occurrence of primary end point	125 (10.3%)	149 (12.4%)	· · · · · ·	0.82 [0.65, 1.04] p=0.11
	Key Secondary End Points				
	First occurrence of primary end point or hospitalization for unstable angina or urgent or emergency revascularization procedure	144 (11.9%)	166 (13.8%)		0.85 [0.68, 1.06]
	First and recurrent primary end point events	171	203	⊢ ●	0.79 [0.60, 1.06]
	Cardiovascular death or non-fatal myocardial infarction	112 (9.2%)	139 (11.5%)		0.79 [0.61, 1.01]
	Coronary heart disease death or non-fatal myocardial infarction	110 (9.1%)	136 (11.3%)	·	0.79 [0.61, 1.02]
	Non-fatal myocardial infarction	77 (6.4%)	94 (7.8%)		• 0.80 [0.59, 1.08]
	Cardiovascular death	45 (3.7%)	55 (4.6%)	• • • ·	0.81 [0.54, 1.19]
	Stroke	17 (1.4%)	17 (1.4%)		1.01 [0.52, 1.98]
	All cause mortality	61 (5.0%)	69 (5.7%)	••	0.88 [0.62, 1.24]
	First hospitalization for congestive heart failure	29 (2.4%)	48 (4.0%)	•••••	0.59 [0.38, 0.94]
	Other Pre-specified End Points				
	First and recurrent hospitalization for congestive heart failure	35	70	• · · · · · · · · · · · · · · · · · · ·	0.47 [0.27, 0.83]
۲	First occurrence of primary end point, excluding undetermined death	113 (9.3%)	140 (11.6%)		0.79 [0.62, 1.01]
			0.2	25 0.50 1.0	0 2.00
				Apabetalone Better F	Placebo Better

Apabetalone had favorable trend on all cardiac endpoints that reached nominal statistical significance for congestive heart failure with a neutral effect on strokes

Phase 3 Clinical Trial: BETonMACE – Key Secondary Endpoint of Hospitalization for CHF

The effect of the co-administration of apabetalone and top standard of care


RESVERLOGIX

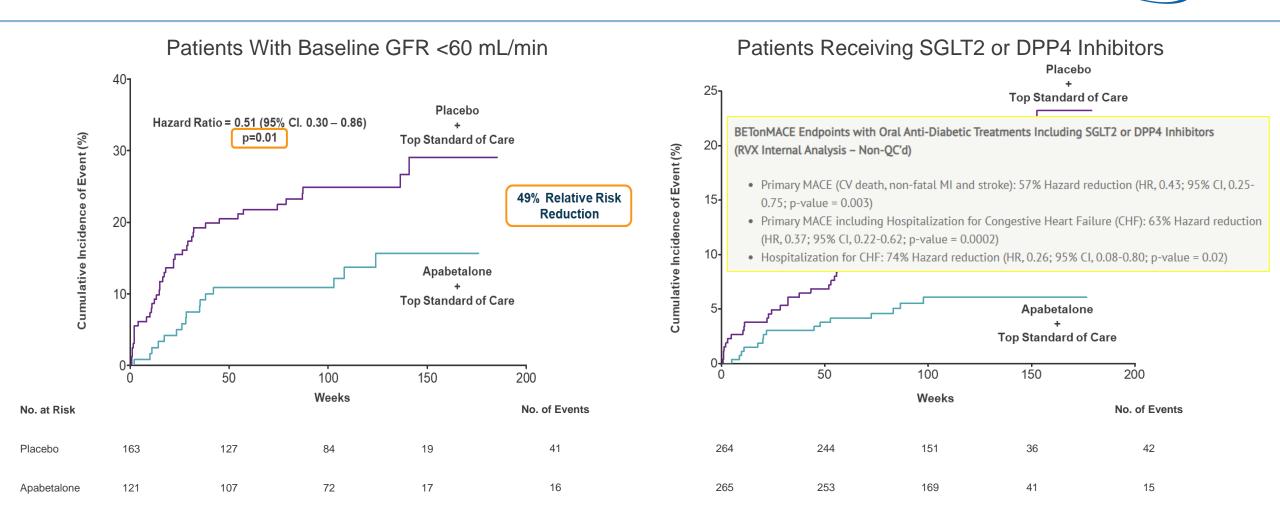
- quantified by hospitalization for congestive heart failure (CHF) – illustrated a significant reduction of events compared to placebo and top standard of care
- HR = 0.59 (95% Cl, 0.38–0.94; p=0.03)
- Apabetalone was well tolerated with similar rates of adverse events compared to placebo in over 4,200 patient years

Top standard of care includes: high intensity statins, ACE inhibitors/angiotensin II blockers, beta blockers, antiplatelet agents

Apabetalone treatment led to a significant 41% RRR of hospitalization for CHF compared to placebo

Phase 3 Clinical Trial: BETonMACE – Composite of Narrow MACE and Hospitalization for CHF

The effect of the co-administration of apabetalone and top standard of care


RESVERLOGIX

- quantified by MACE defined as CV
 death, non-fatal MI, stroke and
 hospitalization for congestive heart
 failure (CHF) illustrated a significant
 reduction of events compared to
 placebo and top standard of care
- HR = 0.78 (95% Cl, 0.63–0.98; p=0.03)
- Apabetalone was well tolerated with similar rates of adverse events compared to placebo in over 4,200 patient years

Top standard of care includes: high intensity statins, ACE inhibitors/angiotensin II blockers, beta blockers, antiplatelet agents

Apabetalone treatment led to a significant 22% RRR of MACE and hospitalization for CHF compared to placebo

Phase 3 Clinical Trial: BETonMACE – Additional Observations

On February 3, 2020, the FDA granted Breakthrough Therapy Designation for apabetalone in combination with top standard of care, including high-intensity statins, for the secondary prevention of MACE in patients with T2DM and recent ACS.

RESVERLOGIX

- Apabetalone is well tolerated.
 - AE's and SAE's are similar in treated and placebo groups.
- Apabetalone treatment led to an increase in transaminases in 3.7% of treated subjects (ALT>5xULN) and only 3.1% greater than placebo.
 - Majority of ALT elevations occurred within a 16-week timeframe and resolved with continuing therapy for levels below 5x ULN and following therapy discontinuation for levels > 5x ULN
 - ALT elevations were not accompanied by raises in bilirubin no Hy's law cases reported.
- Apabetalone treatment did not result in thrombocytopenia, a potential dose-limiting toxicity associated with many BETi oncology candidates.
- No additional toxicity issues have been identified that require dose scheduling, interruption or holidays.

Summary

 Human diseases share a common basic mechanism
 BET proteins are important components of the transcriptional machinery in gene regulation.
 Apabetalone is a selective BET inhibitor that has the potential to significantly lower MACE in pts with DM and CVD.

Outline

- 1.) Role of epigenetics in disease (cancer and CVD/inflammation)
- 2.) Activity of Bromodomain and ExtraTerminal Proteins (BET) in epigenetics
- 3.) Apabetalone (RVX-208), a selective BET inhibitor

Unique BD selectivity and mechanism of action

Preclinical studies; cells and animals

Biomarkers and pathways

Clinical data (Phase 1-3 trials)

Safety of Apabetalone

4.) Future development of Apabetalone

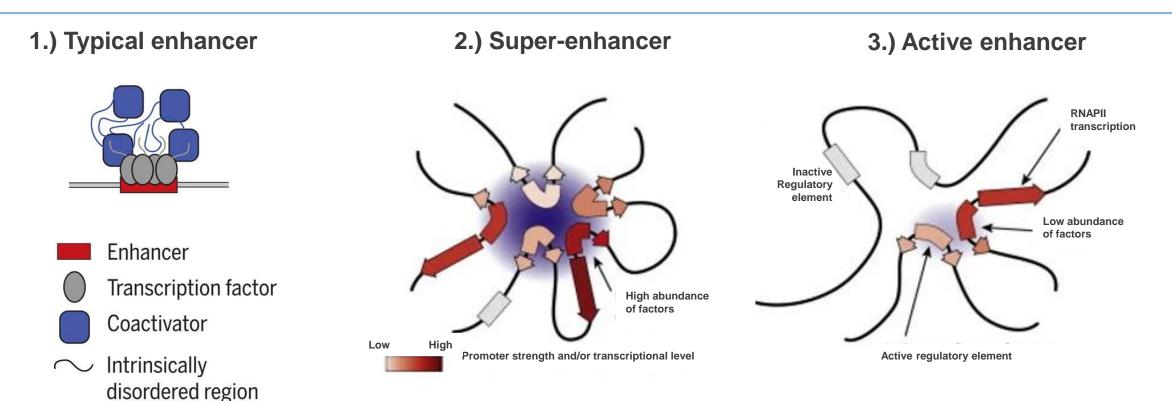
5.) Summary

Apabetalone Development in Additional Indications

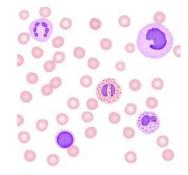
- Type 2 Diabetics with CVD
 - Phase 3 trial BETonMACE2 is planned with 5,000 6,000 patients with T2DM, recent ACS and low HDL levels
- <u>CKD patients with CVD</u>
 - Single apabetalone dose regulated pathways that control immunity and inflammation, oxidative stress, endothelial dysfunction, vascular calcification, and coagulation in the CKD stage IV patient plasma proteome compared to matched controls (Wasiak 2017)
 - Apabetalone treatment of the CKD subgroup in the Phase 3 trial BETonMACE resulted in a HR 0.50 with CI 0.26-0.96, p=0.032 (Ray 2020)
 - BETonMACE2 intends to enroll at least 25% of patients with an eGFR <60 mL/min/1.7m²
 - Phase 2 trial planned
- Vascular Dementia
 - Preclinical work suggest potential benefit in vascular dementia and neuroinflammation
 - Apabetalone treatment of BETonMACE patients with a baseline MoCA<22 significantly improved MoCA scores compared to placebo
 - Phase 2 trial planned
- Pulmonary Arterial Hypertension (PAH)
 - Apabetalone reversed the PAH phenotype in isolated PAH microvascular endothelial cells and smooth muscle cells in vitro, and in diverse PAH rat models (Van der Feen 2019)
 - Currently enrolling 10 well-characterized PAH patients stable for >4 months on standard PAH-therapies in a 16 week Phase 2 trial
- Fabry Disease (FD)
 - Ex vivo treatment of FD patient PBMCs with apabetalone inhibits pro-inflammatory responses initiated via the TLR4 pathway in stimulated monocytes and neutrophils
 - Phase 2 trial planned
- Facioscapulohumeral dystrophy (FSHD)
 - Apabetalone prevents DUX4 activation and the transcription of downstream disease associated genes. FSHD animal models in development to assess efficacy
- <u>COVID-19</u>
 - ACE2 is a cell surface receptor used by 2019-nCoV to gain entry into host cells. Apabetalone reduces circulating ACE2 protein levels in patients, and downregulates ACE2 gene transcription by 40-90% in vitro
 - Phase 2 trial planned

Summary

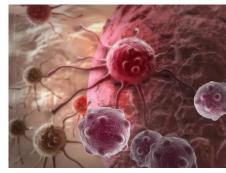
1.) Human diseases share a common basic mechanism

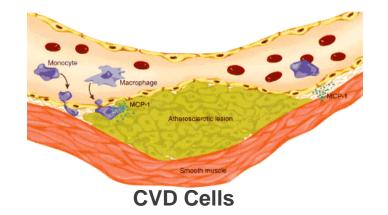

2.) BET proteins are important components of the transcriptional machinery in gene regulation.

3.) Apabetalone is a selective BET inhibitor used chronically has the potential to significantly lower MACE in pts with DM and CVD.


4.) Apabetalone is currently being tested in other disease states.

Typical-, Super-, and Active-Enhancers in Regulating Gene Activity




Benjamin R. Sabari et al. Science 2018;361:eaar3958

Normal Cells

Cancer Cell

Acknowledgements

Resverlogix Corp

Research & Development Team: Calgary, Alberta, Canada

- Laura Tsujikawa
- Dean Gilham
- Sylwia Wasiak
- Li Fu
- Chris Sarsons
- Ravi Jahagirdar
- Christopher Halliday
- Kenneth Lebioda
- Stephanie Stotz
- Brooke Rakai
- Ewelina Kulikowski

Clinical Team: San Francisco, California, USA

- Jan O. Johansson
- Michael Sweeney

Select Publications:

- Ray 2020 Effect of apabetalone added to standard therapy on major adverse cardiovascular events in patients with recent acute coronary syndrome and Type 2 diabetes: a randomized clinical trial. JAMA
- Ray 2019 Effect of selective BET protein inhibitor apabetalone on cardiovascular outcomes. Am Heart J
- **Tsujikawa 2019** Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism. **Clinical Epigenetics**
- Gilham 2019 Apabetalone downregulates factors and pathways associated with vascular calcification. Atherosclerosis.
- Shishikura 2019 The Effect of Bromodomain and Extra-Terminal Inhibitor Apabetalone on Attenuated Coronary Atherosclerotic
 Plaque: Insights from the ASSURE Trial. Am J Cardiovasc Drugs.
- Haarhaus 2019 Apabetalone lowers serum alkaline phosphatase and improves cardiovascular risk in patients with cardiovascular disease. Atherosclerosis.
- Haarhaus 2019 Pharmacologic epigenetic modulators of ALP in CKD Curr Opin Nephol Hyperten
- Kulikowski 2018 Apabetalone Mediated Epigenetic Modulation is Associated with Favorable Kidney Function and Alkaline Phosphatase Profile in Patients with Chronic Kidney Disease. Kidney Blood Press Res.
- Nicholls 2018 Selective BET Protein Inhibition with Apabetalone and Cardiovascular Events: A Pooled Analysis of Trials in Patients with Coronary Artery Disease. Am J Cardiovasc Drugs.
- Wasiak 2017 Benefit of Apabetalone on Plasma Proteins in Renal Disease. Kidney Int Rep.
- Wasiak 2017 Downregulation of the Complement Cascade In Vitro, in Mice and in Patients with Cardiovascular Disease by the BET Protein Inhibitor Apabetalone (RVX-208). J Cardiovasc Transl Res.
- **Gilham 2016** RVX-208, a BET-inhibitor for treating atherosclerotic cardiovascular disease, raises ApoA-I/HDL and represses pathways that contribute to cardiovascular disease. **Atherosclerosis.**
- Wasiak 2016 Data on gene and protein expression changes induced by apabetalone (RVX-208) in ex vivo treated human whole blood and primary hepatocytes. Data Brief.
- Nicholls 2016 Effect of the BET Protein Inhibitor, RVX-208, on Progression of Coronary Atherosclerosis: Results of the Phase 2b, Randomized, Double-Blind, Multicenter, ASSURE Trial. Am J Cardiovasc Drugs.
- Jahagirdar 2014 A novel BET bromodomain inhibitor, RVX-208, shows reduction of atherosclerosis in hyperlipidemic ApoE deficient mice. Atherosclerosis.
- McLure 2013 RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist. PLoS One.
- Nicholls 2012 ApoA-I induction as a potential cardioprotective strategy: rationale for the SUSTAIN and ASSURE studies. Cardiovasc Drugs Ther
- Nicholls 2010 Efficacy and safety of a novel oral inducer of apolipoprotein a-I synthesis in statin-treated patients with stable coronary artery disease a randomized controlled trial. J Am Coll Cardiol.
- Bailey 2010 RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo [published correction appears in J Am Coll Cardiol