

The Epigenetic BET Protein Inhibitor Apabetalone Counters Brain, **Endothelial Activation and Monocyte Adhesion** RESVERLOGIX

Sylwia Wasiak¹, Li Fu¹, Emily Daze¹, Dean Gilham¹, Brooke D. Rakai¹, Stephanie C. Stotz¹, Laura M. Tsujikawa¹, Chris D. Sarsons¹, Deborah Studer³, Kristina D. Rinker³, Ravi Jahagirdar¹, Norman C. W. Wong¹, Michael Sweeney², Jan O. Johansson² and Ewelina Kulikowski¹

¹Resverlogix Corp. Calgary, AB Canada, ²Resverlogix Inc. San Francisco, CA USA, ³Department of Chemical and Petroleum Engineering, Calgary, AB Canada

Background

Increased immune activity at the blood brain barrier (BBB) can exacerbate neuroinflammation. With aging, overexpression of tissue nonspecific alkaline phosphatase (ALPL) abundance in the cerebrovasculature, can reduce BBB function. Bromodomain and extraterminal (BET) proteins are histone acetylation readers that activate cytokinedependent transcription in monocytes and endothelial cells and promote ALPL expression. Targeting BETs with epigenetic therapies may reduce BBB dysfunction due to immune-brain signaling and ALPL expression.

Apabetalone Counters Proinflammatory Cytokine Secretion of Brain Endothelial Cells

hCMEC/D3 Monolayer is Impermeable to

Apabetalone Reduces Monocyte Adhesion to Activated Brain Endothelial Cells

THP-1 cell adhesion to cytokine-treated HBMVECs **Monocyte – HBMVEC**

Methods

 Polarized hCMEC/D3 cell monolayers grown on suspended cytokine inserts: secretion Profiling) (Multianalyte assessed in was response to 25 μ M apabetalone or 0.025% DMSO + 100 ng/mL IL-1 β or TNF α +IFN γ (24h). Primary human brain microvascular (HBMVECs): effect of endothelial cells apabetalone on gene expression and adhesion protein surface levels $\pm TNF\alpha + IFN\gamma$ stimulation (4h) was assessed by PCR and FACS.

THP-1 monocyte cell line: THP-1 adhesion to HBMVEC monolayers was measured under flow conditions. Surface receptor laminar expression was assessed by PCR and FACS.

Results

- Stimulated hCMEC/D3 cells: In response to Stimul TNF α +IFN γ or IL-1 β , cells had polarized secretion profiles across the luminal and abluminal membranes. Apabetalone treatment $(25\mu M)$ reduced gene expression and protein secretion TNFαof key inflammatory cytokines. BET dependency was confirmed with MZ-1 treatment, which degrades BET proteins.
- **HBMVEC-THP-1 interactions**: During TNFα+IFNγ stimulation, apabetalone inhibited expression of cell adhesion proteins VCAM-1 (5 and 25μ M) and E-selectin (25μ M) in HBMVECs. In THP-1 cells, chemokine receptors CCR1, CCR2 CX3CR1 suppressed were also by and apabetalone. Upon cytokine activation of the

Secretion pg/mL

IL-

Secretion pg/mL

Brain = Basolateral Blood = Luminal

Statistics: Two-Way ANOVA with Bonferroni's multiple comparisons test; * p<0.05; *** p<0.001

Apabetalone Decreases Pro-inflammatory Secretion

		Fold Induction	% Reduction	Fold Induction	% Reduction
lation	Secretion	"Blood"/	'Luminal	"Brain"/B	asolateral
1β	ΤΝΓα	47	45	37	49
	MCP-3	305	93	58	83
±β +IFNγ	Fractalkine	101	89	16	87
	GM-CSF	11	85	6	82
	IL-1RA	7	52	11	47
	G-CSF	8	52	7	52
+ιγιη	IL-6	49	52	15	46
	IL-8	16	41	8	39
-	MCP-1	16	41	29	74
	RANTES	21	21	6	44
	IP-10	4450	30	3435	26

Surface Statistics: Bold values represent a statistically significant change (p<0.05). One-Way ANOVA with Tukey's test.

Apabetalone Reduces Cell Adhesion Receptors in Endothelial Cells and Monocytes

IL-8	5	-38
G-CSF	4	No effect
IP-10	608	-23
GM-CSF	2	No effect

Statistics: One-Way ANOVA with Tukey's test; bold: p<0.05

Alkaline Phosphatase Gene Expression in Brain Endothelial Cells is Suppressed by BETi

Summary and Conclusions

monolayer, HBMVEC-THP-1 interactions were reduced by both concentrations of apabetalone under flow conditions.

 Non-stimulated HBMVECs: Apabetalone treatment decreased ALPL gene expression in a dose dependent manner by up to 70%.

Drug Mechanism of Action

competitively Apabetalone binds bromoto domains in histone acetylation "readers" termed BET proteins, causing their release from chromatin downregulation of BET sensitive gene and expression.

BET: bromodomain and extraterminal proteins; ac: acetylated lysine residue on DNA associated proteins; BD: bromodomain; TF: transcription factor

HBMVECs were stimulated for 4h with 10 ng/mL TNF α +IFN γ ± DMSO or apabetalone, followed by gene expression analysis (PCR) and surface protein quantification (FACS).

	mRN	NA Expres	sion	Surface Protein Level		
	TNFα+IFNγ	5µ M Apa	25µM Apa	TNFα+IFNγ	5μМ Ара	25μМ Ара
	Fold Induction	% Red	uction	Fold Induction	% Reduction	
CAM-1	355	-45	-89	12	-53	-81
-selectin	32	-16	-43	372	No effect	-53

Statistics: One-Way ANOVA with Tukey's multiple comparisons test; bold: p<0.05

Unstimulated THP-1 cells were treated with 25µM apabetalone, followed by gene expression analysis (24h; PCR) and surface protein quantification (48h; FACS).

	mRNA Ex	pression	Surface Protein Level		
	5μМ Ара	25µM Apa	5µМ Ара	25μΜ Α ρа	
	Fold Induction	% Reduction	% Reduction		
CR1	-33	-69	-50	-59	
CR2	-28	-74	-54	-79	
X3CR1	No effect*	-28*	-44	-66	

Statistics: One-Way ANOVA with Tukey's multiple comparisons test; bold: p<0.05 * mRNA levels were measured at 48h post-dose.

• Apabetalone decreases endothelial chemokine secretion and endothelium-monocyte adhesion in a BBB model.

• This may reduce immune cell transmigration into the neurovascular inflammation brain during and neurodegeneration.

• Apabetalone may improve BBB function during aging due to alkaline phosphatase reduction (Haarhaus 2019, Curr **Opin Nephol Hyperten).**

• These effects may contribute to the favourable effect of apabetalone on cognition in patients from the phase 3 cardiovascular outcomes trial (BETonMACE).

Disclaimer: Authors are Resverlogix' employees or contractors.