

The Epigenetic Modulator Apabetalone Downregulates Brain **Endothelial Activation and Monocyte Adhesion**

Sylwia Wasiak¹, Li Fu¹, Emily Daze¹, Dean Gilham¹, Brooke D. Rakai¹, Stephanie C. Stotz¹, Laura Tsujikawa¹, Chris D. Sarsons¹, Deborah Studer², Kristina D. Rinker², Ravi Jahagirdar¹, Norman C. W. Wong¹, Michael Sweeney², Jan O. Johansson² and Ewelina Kulikowski¹

¹Resverlogix Corp. Calgary, AB Canada, ²Resverlogix Inc. San Francisco, CA USA, ³Department of Chemical and Petroleum Engineering, Calgary, AB Canada

Background

Blood brain barrier disruption by proinflammatory putative driver cytokines of neuro-İS а degeneration. Stimulated brain microvascular endothelial cells secrete cytokines into the bloodstream (via luminal membranes) and the brain parenchyma (via basolateral membranes). Cytokine-mediated recruitment of monocytes neuroinflammation. Bromodomain exacerbates and extraterminal domain (BET) proteins are histone acetylation readers that activate cytokinedependent transcription in models of vascular inflammation.

Monocyte Infiltration into the Central Nervous System Contributes to Neuroinflammation

Cytokine Expression in Brain Endothelial Cells Is BET Protein Dependent

hCMEC/D3 endothelial cell line was co-treated for 24h with 10 ng/mL TNF α +IFN γ and DMSO or 0.2 μ M MZ-1 (BET degrading compound). BET expression was analyzed by Western blot. Gene expression was analyzed by PCR.

Objective

Here, we demonstrate the impact of apabetalone, stage BET proteins inhibitor, on clinical inflammatory activation of human brain microvascular endothelial cells.

Methods

- Polarized hCMEC/D3 cell monolayers grown on suspended inserts: cytokine secretion (Milliplex[®]) Multianalyte Profiling) was assessed in response to 25 μ M apabetalone or DMSO in the presence of 100 ng/mL IL-1 β or TNF α +IFN γ (24h).
- Primary brain human microvascular endothelial (HBMVECs): effect of cells

Polarized Secretion of Proinflammatory Cytokines by Brain Endothelial Cells

hCMEC/D3 cell monolayer was cultured on suspended inserts. Cytokines and compounds were added to the luminal chamber, followed by secretion profiling. "Brain "= Basolateral Secretion

Luminal vs. **Basolateral** Secretion (TNF α +IFN γ , 24h)

			-	
BET knockdown by MZ-1		Cytokine	ΤΝFα+IFNγ	0.2μM MZ-1
		Gene	Fold Induction	% Reduction
		MCP-3	25	-91
, SO		Fractalkine	124	-86
		MCP-1	6	-48
		RANTES	24	-43
250_		IL-6	13	-42
100-	BRD2	IL-8	5	-38
100	BRD3	G-CSF	4	No effect
100-	LOADING	IP-10	608	-23
	CONTROL	GM-CSF	2	No effect

Statistics: One-Way ANOVA with Tukey's test; bold: p<0.05

-53

RESVERLOGIX

Apabetalone Reduces Monocyte Adhesion to Activated Brain Endothelial Cells

Primary human brain microvascular endothelial cells were stimulated for 4h with 10 ng/mL TNF α +IFN γ ± DMSO or apabetalone, followed by gene expression analysis (real-time PCR) and surface protein quantification (FACS).

	mRNA Expression			Surface Protein Level		
	ΤΝFα+IFNγ	5µ M Apa	25µM Apa	ΤΝFα+IFNγ	5μМ Ара	25µM Apa
	Fold Induction	% Reduction		Fold Induction	% Reduction	
Л_1	255	_15	_20	12	_52	

apabetalone on gene expression and adhesion protein surface levels during TNF α +IFN γ stimulation (4h) was assessed by PCR and FACS. THP-1 monocyte adhesion to HBMVECs was measured under laminar flow conditions.

Results

- **hCMEC/D3 cells**: In response to TNF α +IFN γ or ILstimulation, cells had distinct protein 1β secretion profiles across the luminal and abluminal membranes. Apabetalone treatment $(25\mu M)$ reduced gene expression and protein secretion of key inflammatory cytokines, including GM-CSF, fractalkine, MCP-3, IP-10, IL-6, IL-8, MCP-1 and RANTES (40% to 90% reduction, p<0.05). BET dependency was confirmed with MZ-1 treatment, which degrades BET proteins.
- HBMVECs: During TNF α +IFN γ stimulation, apabetalone inhibited surface expression of cell adhesion proteins VCAM-1 (5 and 25μ M) and Eselectin (25μ M) in HBMVECs. Consequently, HBMVECs' interactions with THP-1 cells were

100 ng/mL TNF α +IFNy

"Blood" = Luminal Secretion

Statistics: Two-Way ANOVA with Bonferroni's multiple comparisons test; * p<0.05; *** p<0.001

Apabetalone Counters Proinflammatory Cytokine Secretion of Brain Endothelial Cells

Protein	ΤΝFα+IFNγ	Apabetalone	IL-1β	Apabetalone					
Name	Fold Induction vs. DMSO	% Reduction	Fold Induction vs. DMSO	% Reduction					
"Blood"/Luminal Cytokines									
MCP-3	305	93	101	81					
Fractalkine	101	89	5	47					
GM-CSF	11	85	64	42					
ΤΝΓα	No effect	No effect	47	45					
IL-1RA	7	52	5	28					
G-CSF	8	52	21	9					
IL-6	49	52	236	45					
IL-8	16	41	31	39					
MCP-1	16	41	31	39					
RANTES	21	21	6.0	54					
IP-10	4450	30	23	55					
"Brain"/Basolateral Cytokines									
Fractalkine	16	87	3	43					
MCP-3	58	83	43	78					
GM-CSF	6	82	62	58					
MCP-1	29	74	8	58					
ΤΝΓα	No effect	No effect	37	49					
G-CSF	7	52	48	12					
IL-1RA	11	47	9	37					
IL-6	15	46	92	50					
RANTES	6	44	1	7					
IL-8	8	39	20	37					
IP-10	3435	26	25	45					

Summary and Conclusions

reduced by both concentrations of apabetalone under flow conditions.

Drug Mechanism of Action

BET proteins control gene transcription through with transcription interactions factors and RNA polymerase II recruitment of to gene promoters via P-TEFb. Apabetalone binds to bromodomains in BET proteins, causing their release from chromatin and downregulation of BET sensitive gene expression.

BET: bromodomain and extraterminal proteins; ac: acetylated lysine residue on DNA associated proteins; BD: bromodomain; TF: transcription factor

Statistics: Bold values represent a statistically significant change (p<0.05). One-Way ANOVA with Tukey's test.

 Apabetalone decreases endothelial chemokine secretion and endothelium-monocyte adhesion in an *in vitro* BBB model.

• This may reduce immune cell transmigration into the brain during neurovascular inflammation and neurodegeneration.

• These anti-inflammatory effects may contribute to the favourable effect of apabetalone on cognition in patients with MoCA scores XX-XX from the phase 3 cardiovascular outcomes trial (BETonMACE).

Disclaimer: Authors are Resverlogix' employees or contractors.