Apabentalone (RVX-208) Lowers Major Adverse Cardiovascular Events (MACE) in Diabetes Mellitus Pathway by Affecting Complement Pathway and Microbiome Activity

Kulikowski, E.1, Calosing, C., Tsujikawa, L., Wasiak, S., Gilham, D., Halliday, C., Sweeney, M., Johansson, J., and Wong, N.C.W.1
All authors are employees of Resverlogix Corporation, 1Calgary, AB, Canada and 2San Francisco, CA, USA.

Abstract

In phase 2b trials lasting 6 months, patients (n=499) given 200 mg/d of apabentalone had a 55% relative risk reduction in MACE that was lowered further in diabetes mellitus (DM). These findings underpin our interest to explore potential mechanism(s) behind MACE reductions arising from RVX-208, a selective BET inhibitor (BETi) that acts via displacing acetylated-lysine moieties in histones from the 2nd ligand domain in bromodomain extra-terminal (BET) proteins. Previous studies showed RVX-208 may lower CVD risks by affecting inflammation, metabolism, coagulation and complement. Studies here examine how RVX-208 may block actions of a suspected culprit in atherosclerosis, trimethyl amine oxide (TMAO), derived from microbiome activity. Huh-7 hepatoma cells or primary hepatocytes (PH) were examined using RT-PCR and western-blot in high glucose (25.6 mM) Huh-7 cells exposed to 1-100 uM TMAO acting within 6-48 hrs to induce mRNA encoding Mannose Binding Lectin-2 (MBL2) and Complement-3 (C3) members of the complement pathway by 40 and 20%, respectively in a time and dose dependent manner. RVX-208 blocked TMAO induction of MBL2 and C3 in these cells. However, TMAO had no effect on complement C5. In contrast, all 3 genes in euglycemia (5.6 mM) was not induced by TMAO but RVX-208 still lowered their expression. The microbiome transforms dietary phospholipids to TMAO the substrate for hepatic flavin mono-oxygenase-3 (FMO3) converting it to TMAO. In PH, RVX-208 acted within 24 hrs to repress FMO3 mRNA and protein levels by 40 and 30%, respectively. In summary, hepatoma cells and hepatocytes cultured in high or euglycemic media reflect diabetic state or not, respectively. TMAO induces complement MBL2 and C3 in cells exposed to hyperglycemia while RVX-208 blocks this induction. Additionally, BETi lowers FMO3 mRNA and protein. Thus RVX-208 blocks both detrimental effects of TMAO and its production as potential mechanisms for how apabentalone lowers MACE in DM.

Summary

1.) Apabentalone (RVX-208) lowers MACE in post-hoc analysis of phase 2b studies.

2.) Benefits of RVX-208, a selective BETi, is multifactorial including the complement pathway.

3.) In liver cells, TMAO a dietary by-product suspected to play a role in CVD risks, induces complement MBL2 & C3 but not C5.

4.) TMAO effects are reversed by RVX-208 & provides a potential mechanism by normalizing complement in CVD to lower MACE.

5.) RVX-208 appears to lower FMO3 mRNA, the enzyme responsible for creating TMAO from dietary phospholipids.

Micro-array Gene Sets

A. TMAO induces MBL2 and C3 in Huh-7 (high glucose) time course.

B. RVX-208 blocks TMAO induction of MBL2 & C3 in Huh-7 (high glucose).

C. TMAO has no affect on MBL2 or C3 in Huh-7 (euglycemia).

D. TMAO has no affect on C5 in Huh-7 (euglycemia or high glucose, 48h).

E. RVX-208 blocks TMAO induction of MBL2 in PHH (high glucose).

F. FMO3 mRNA is suppressed by BETi using RVX-208/JQ-1


Disclosures (All authors are paid employees of Resverlogix Corp.)
E. Kulikowski Salary, Officer
C. Calosing Salary
L. Tsujikawa Salary
S. Wasiak Salary
D. Gilham Salary
C. Halliday Salary
J. Johansson Salary, Officer
M. Sweeney Salary, Officer
N. Wong Salary, Officer

1. KEGG
2. REACTOME
3. Classi Pathway
4. Lectin Pathway
5. Alternate Pathway

MBL2, 72h

C3, 6h